Tekniska hjälpmedel för (eller emot) matematiklärande Tomas Bergqvist Peter Nyström Umeå Forskningscentrum för Matematikdidaktik
Tekniska hjälpmedel för (eller emot) matematiklärande Introduktion Hjälpmedelskompetens Forskning om tekniska hjälpmedel Forskning om grafräknare Symbolhanterande räknare
Olika typer av räknare Enkla räknare Tekniska räknare Grafritande räknare Symbolhanterande räknare Datorer
Mobiltelefonen Hur många elever använder mobilen som räknare i dina klasser? Har du provat att använda mobilen som räknare själv?
Vad skiljer grafräknaren från telefoner och andra räknare? Kan rita grafer
Vad skiljer grafräknaren från telefoner och andra räknare? Kan rita grafer Man ser det man har matat in
Vad skiljer grafräknaren från telefoner och andra räknare? Kan rita grafer Man ser det man har matat in Formler matas in i korrekt ordning cos(30°) log(100)
Vad skiljer grafräknaren från telefoner och andra räknare? Kan rita grafer Man ser det man har matat in Formler matas in i korrekt ordning cos(30°) log(100) EXE (utför) i stället för =
Vad skiljer grafräknaren från telefoner och andra räknare? Kan rita grafer Man ser det man har matat in Formler matas in i korrekt ordning cos(30°) log(100) EXE (utför) i stället för = Två olika minustecken
Vad skiljer symbolhanterande räknare från grafräknare? Kan allt som grafräknaren kan Innehåller ett CAS Kan hantera algebra Löser ekvationer exakt Bestämmer derivator och integraler exakt Innehåller ofta dynamisk geometri
Kursplaner Ämnet Matematik, mål att sträva mot ”Skolan skall i sin undervisning i matematik sträva efter att eleverna utvecklar sina kunskaper om hur matematiken används inom informationsteknik, samt hur informationsteknik kan användas vid problemlösning för att åskådliggöra matematiska samband och för att undersöka matematiska modeller.”
Kursplaner Matematik kurs A, mål att uppnå ”Eleven skall efter avslutad kurs ha vana att vid problemlösning använda dator och grafritande räknare för att utföra beräkningar och åskådliggöra grafer och diagram”
Kursplaner Matematik kurs D, mål att uppnå ”Eleven skall efter avslutad kurs vid problemlösning kunna använda grafisk, numerisk eller symbolhanterande programvara för att beräkna integraler.”
Pengar Svenska skolan ska vara kostnadsfri. Kan vi uppnå kursplanens mål om eleverna inte har en egen grafritande räknare? Vad betyder ”ha vana vid”?
Hjälpmedelskompetens
Hjälpmedelskompetens Vad ingår i detta begrepp?
Hjälpmedelskompetens Vad ingår i detta begrepp? Handhavande
Hjälpmedelskompetens Vad ingår i detta begrepp? Handhavande Kunskap om vad som kan göras
Hjälpmedelskompetens Vad ingår i detta begrepp? Handhavande Kunskap om vad som kan göras Förmåga att välja vad som ska göras
Hjälpmedelskompetens Vad ingår i detta begrepp? Handhavande Kunskap om vad som kan göras Förmåga att välja vad som ska göras Förmåga att avgöra vilket hjälpmedel som passar till vilken uppgift.
Hjälpmedelskompetens Matematikdelegationens betänkande om vad ett modernt matematikkunnande är: ”konsten att hantera tekniska hjälpmedel relevant och effektivt är ytterligare aspekter av ett detta kunnande.”
Forskning om räknare i skolmatematik Forskningens uppgift är inte att säga hur undervisningen ska bedrivas utan att ge lärare möjligheter att förstå hur lärande fungerar så att de själva kan utveckla sin undervisning.
Forskning om räknare i skolmatematik ”Research can help us understand how technology may be a positive influence on teaching and how it becomes a barrier”. Burril, G (2002): Handheld Graphing Technology in Secondary Mathematics.
Forskning om räknare i skolmatematik I huvudsak positiva resultat om miniräknarens effekter (Ellington, 2003, Ruthven, 2004) Domineras av specialfall, småskalighet, och studier över kort tid Vi vet inte hur typiska användningar av miniräknare i skolan har påverkat elevernas matematiska tänkande och beteende Forskningen har kritiserats för att ge liten vägledning om hur miniräknare borde användas (Kilpatrick, Swafford, & Findell, 2001).
Svensk forskning om tekniska hjälpmedel i matematik ADM-projektet, Björk & Brolin 1995 Dahland 1998 Lingefjärd 2000 Bergqvist 2001 Samuelsson 2003 Engström 2006
Forskning om grafräknaren i gymnasiematematiken Elever med räknare använder grafer och utforskar matematik i högre grad än elever utan räknare. De är flexiblare i strategier, med representationsformer och är bekväma med verkliga data.
Forskning om grafräknaren i gymnasiematematiken Elever med räknare använder grafer och utforskar matematik i högre grad än elever utan räknare. De är flexiblare i strategier, med representationsformer och är bekväma med verkliga data. Inga tydliga skillnader i elevers förmåga att utföra operationer för hand kan påvisas.
Forskning om grafräknaren i gymnasiematematik Lärare använder ofta räknaren i samband med sin vanliga undervisningsmetod.
Forskning om grafräknaren i gymnasiematematiken Lärare använder ofta räknaren i samband med sin vanliga undervisningsmetod. Att bara informera lärare om hur räknare fungerar ger ingen tydlig förändring av deras undervisning. Det krävs kompetensutveckling och stöd.
Forskning om grafräknaren i gymnasiematematiken Vissa lärare låter eleverna själva utveckla sin räknaranvändning. Andra lärare formar sina elevers användning.
Forskning om grafräknaren i gymnasiematematiken Vissa lärare låter eleverna själva utveckla sin räknaranvändning. Andra lärare formar sina elevers användning. Elever litar på räknaren i hög grad och har en begränsad kritisk analys av resultat.
Forskning om grafräknaren i gymnasiematematiken Vissa lärare låter eleverna själva utveckla sin räknaranvändning. Andra lärare formar sina elevers användning. Elever litar på räknaren i hög grad och har en begränsad kritisk analys av resultat. Räknarens potential underutnyttjas.
CAS – Computer Algebra Systems Introduktionen av datorbaserade algebra-hanterande verktyg i matematikklassrummet … öppnade för möjligheten till en förskjutning från en betoning på att utföra traditionella algebraiska uppgifter som att lösa ekvationer och förenkla algebraiska uttryck till utvecklingen av en djupare begreppsförståelse och en förmåga att tillämpa algebra i verklighetsnära sammanhang (Heid & Edwards, 2001)
Inte dina föräldrars algebra In a technological world, algebra would no longer be centered on the by-hand symbolic manipulation procedures that have dominated school mathematics instruction for countless years
Forskningsresultat om CAS Teknologi förändrar matematikklassrummet Intensifierar och fokuserar diskussionen Gör eleverna mer uthålliga och flexibla i problemlösning Kontrollerar inte resultat Gör lärarens roll mer komplex Förbättrar begreppsförståelsen och försämrar inte manuella färdigheter
Symbolhanterande räknare MatBIT (2002). Vad händer om eleverna får använda symbolhanterande räknare på nationella prov?
Symbolhanterande räknare MatBIT (2002). Vad händer om eleverna får använda symbolhanterande räknare på nationella prov? På flesta uppgifter spelar det ingen roll. Där det spelar roll handlar det om proceduruppgifter som kan flyttas till den räknarfria delen av provet.
Exempel på en uppgift
Exempel på en uppgift cos(x) = x Symbolhanterande räknare kan lösa ekvationen. Grafräknare kan också lösa den, men inte lika självklart. Svårigheten är främst att ta fram ekvationen.
Tack för visad uppmärksamhet tomas.bergqvist@educ.umu.se peter.nystrom@edmeas.umu.se UFM, Umeå Forskningscentrum för Matematikdidaktik www.ufm.org.umu.se