Ny kärnkraft för en uthållig framtid

Slides:



Advertisements
Liknande presentationer
Geografi Henrik Carlsson.
Advertisements

Nu ska vi i motala och vadstena börja sortera våra matrester
Anders Nordlund Nukleär Teknik, Chalmers
Säkerhetsrisker vid svenska kärnkraftverk Rolf Lindahl, Greenpeace.
~ Den första mobiltelefonen ~
Hur fungerar kärnkraft?
Ruschkomposten Förbundet Organisk Biologisk Odling FOBO
Enhetschef Fastighetsutveckling
EU 2020 strategin •Bakgrund –Den ekonomiska krisen har raderat bort flera års ekonomisk och social utveckling. –Samtidigt rör sig världen snabbt framåt.
KÄRNENERGI Energi ur atomkärnor Kap 12.3 s
Vad är orsaken till problemet?
Låg- och medelaktivt avfall Loma-programmet
SÄKRARE MOBIL DATORANVÄNDNING: DEN GODE, DEN ONDE OCH DEN FULE KÄLLA: TOSHIBA EUROPE GMBH.
Den här presentationen går igenom hur energin, klimatet och tillväxten hänger ihop. Den beskriver hur utsläppen globalt sett har ökat kraftigt de senaste.
Olika energi källor Skilj mellan förnyelsebara och ej förnyelsebara energikällor (fossila bränslen eller material)
Energiformer och energikällor
[Byt ut Avfall Sverige mot egna organisationen alternativt svensk avfallshantering där så är lämpligt.]
- Konsten att ge feed-back
Fjärde järnvägspaketet
Småskalig värmeförsörjning med biobränslen, oktober 2010, Piteå Kostnadseffektiv partikelavskiljning i mindre närvärmeanläggningar.
Lennart Abramsson.
EU 2020-strategi Smart tillväxt, hållbar tillväxt, tillväxt för alla
Carl Sommerholt Kommunikationschef Vattenfall Kärnkraft
Fossilbränslefri region
Hälsa i ett globalt perspektiv.
Hälsa i ett globalt perspektiv. Varje land har sin egen hälsopolitik och varje land måste vara aktiva internationellt och ha en egen hälsopolitik som hanterar.
Mål för vind/förnybar energi Lars Andersson, chef för Energimyndighetens vindenhet.
Vad gör Borås Energi och Miljö?
Hur fångas energi?.
Energikällor.
*text. Sustainable engineering and design. Min rubrik idag kWh- och resurskunskap Fin- och ful-el (är det samma sida av olika mynt?)
Kärnkraftens kostnader
Fusion (sammanslagning) & fission (sönderdelning)
Hållbar utveckling Vad är det för något? Vad handlar det om?
Energieffektivisering i EU SEEF 19 februari 2008 Edvard Sandberg Svensk Energi.
Den framtida (el)energiförsörjningen?
INTRODUKTION LOKALT ÅTERBRUK MED NY BIOTEKNIK
Säkerhetsfilosofi KBS-3 KBS-3-metodens säkerhetsfilosofi Allan Hedin, SKB.
Fokus III & UP-System AES-konferens i Katrineholm 7 maj 2009 Jörgen Sjödin & Lars Ingelstam.
Avfall och återvinning
50 % CO2e
”Hållbar affärsutveckling i ett helhetsperspektiv ” PurNet 24 maj 2011 Thomas Bergmark
Makt och Demokrati.
Klimathotet Krympt global ekonomi - med 51 tusen miljarder kronor Svåra översvämningar (höjda havsnivåer) Vattenbrist, torka, ökenutbredning Oförutsedda.
Kemi för hållbar utveckling och ökad livskvalitet
Kol och kolföreningar Kort och snabbt.
Stöd till energieffektivisering i kommuner och landsting Anna Green, Miljöenheten.
Tema: Hållbar utveckling
Atomfysik Trådkurs 7.
Atombomb.
Sven Svensson Norregård 2012
ATOM & KÄRNFYSIK.
Utveckling och ekonomi
Miljövänliga produkter med Industriell Bioteknik
IEA och IPCC hävdar att de fossila bränslenas användning kommer att öka.
Vägval för resurseffektiv effektivisering 1.
Pontus Bengtson, OpenBIM/WSP Samhällsbyggnadssektorn – i stora drag yrkesverksamma Årliga investeringar – ca 300 miljarder SEK - Bostäder,
ALTERNATIVA BRÄNSLEN OCH FORDON BRÄNSLECELLSDRIVNA FORDON Carlos Sousa AGENEAL, Local Energy Management Agency of Almada.
Erbjuder sina kunder att; Fokusera på sin kärnverksamhet Expandera med flexibel tillverkningskapacitet Sänka sina tillverknings kostnader Frigöra bundet.
Hur mår Halland? Sofia Frising miljömålssamordnare
Peter Danielsson 2012 KRITERIER FÖR ELENERGIUTVECKLINGEN Användningen minskar med i genomsnitt 0,8 % per år från 143 till 125 TWh.
Atomfysik Mälarhöjdens skola Ht 15.
Vad är energi? Åsa Kallebo, Stenungskolan, Stenungsund –
Miljö kemi.
Atomfysik Mälarhöjdens skola Ht 15.
YG20 – Utlandbesök Frankrike -Marcoule -Cadarache -Iter

Produktion, handel och transport
Transport & handel.
Riksdagspartierna och energipolitiken
Presentationens avskrift:

Ny kärnkraft för en uthållig framtid Generation-IV Ny kärnkraft för en uthållig framtid Jan Blomgren Svenskt Kärntekniskt Centrum Jan Blomgren, SKC 2009-02-12

Kärnkraft idag 31 % av Europas el, nära 50 % av Sveriges  basförsörjning, stabila priser Kärnkraft dominerar EU:s koldioxidfria el EU:s utsläppsmål (2020/2050) kan inte nås utan kärnkraft SNETP - Sustainable Nuclear Energy Technology Platform (www.snetp.eu) EU-sanktionerat organ för utveckling av uthållig kärnkraft Alla Europas stora aktörer medlemmar Generation II (Lättvattenreaktorer, LWR) = dagens kärnkraft Upprustningar för ökad livslängd, bättre prestanda och säkerhet Generation III: Avancerade LWR – kraftigt ökad säkerhet, bättre prestanda Byggs i Finland och Frankrike Många EU-länder på gång I drift till år 2100 Jan Blomgren, SKC 2009-02-12 2

Kärnkraftens utveckling Generation II Generation III Evolution av Gen-II Generation IV Revolution Typ Lättvattenreaktorer (LWR) Utvecklade LWR Metallkylning, Gaskylning Driftsstart 1965-1995 1990-2030 Prototyper 2020 Industri 2040 Exempel Alla svenska Finlands nya (Olkiluoto 3) Skall byggas i Frankrike Specifikt Första industri- generationen Bättre prestanda, Höjd säkerhet Återvinning av bränsle Generation I = prototyper 1950-70 Jan Blomgren, SKC 2009-02-12

Varför GenIII-reaktorer? Säkerhet: Enklare (!) system  säkrare reaktor Mindre teknik, mer passiv säkerhet via naturlagar Exempel: naturlig cirkulation istället för pumpar Robustare byggda Exempel: “Härdsmälte-fälla” = byggd för att klara stora olyckor Ekonomi: Högre verkningsgrad  effektivare bränsleanvändning (Hög byggkostnad i Finland pga kultursvårigheter, inte tekniska problem…) Jan Blomgren, SKC 2009-02-12 4

Europas strategi för Gen-IV SNETP - Strategic Research Agenda (November 2008) Parallell utveckling av flera olika reaktortekniker Redan prövad teknik: Natriumkylning (SFR, Sodium cooled Fast Reactor) Alternativ: Blykylning (LFR), gaskylning (GFR) Teknikerna fungerar som koncept Forskningen handlar om att utveckla industri av koncepten: Enklare design, ökad säkerhet, acceptabel ekonomi, stryktåliga material,… 2012: design av första prototyp klar (SFR i Frankrike) 2020: driftsstart av första prototyp 250-600 MWe, som Sveriges minsta reaktorer idag Jan Blomgren, SKC 2009-02-12

Varför GenIV-reaktorer? Uthållighet: Dagens kärnkraft använder ca 1 % av uranet Ingen brist på uran inom 100 år, men på längre sikt Återvinning: Avfallet från dagens reaktorer = bränsle i GenIV-reaktorer  100 ggr effektivare resursanvändning  I praktiken outtömlig resurs: Dagens avfall används som bränsle (räcker i sekler!) Uran av låg kvalitet kan användas senare Uran i havsvatten kan utnyttjas på lång sikt Avspänning: Dagens kärnvapen kan användas som bränsle (Görs redan, men dagens reaktorer klarar inte allt material) Jan Blomgren, SKC 2009-02-12

Varför finns detta inte redan? Svårare teknik Inte vattenkylning  Kylning med smält metall (natrium, bly, vismut) Tuff miljö för materialen Hög temperatur Stark korrosion Kraftig bestrålning Svårare att tillverka bränslen Radioaktiv råvara (avfall från dagens reaktorer)  Fjärrstyrd tillverkning (dyrt!) Komplicerad kemi Tekniken finns idag, men är dyrare än dagens kärnkraft Kostnaderna ungefär som för vindkraft idag – men bör kunna sänkas med ökad erfarenhet och teknikutveckling Jan Blomgren, SKC 2009-02-12

Kärnkraftens avfall Två typer av avfall: Klyvningsrester Farliga även utanför kroppen 1 m betong, 2-3 m vatten bra skydd Borta på ca 500 år Trans-uraner Ämnen tyngre än uran, plutonium vanligast Ganska svagt radioaktiva Farliga bara om man äter/dricker/inandas dem Keramiskt stabilt material, löser sig inte i vatten 100 000 år till naturlig radioaktivitet, men naturlig nivå är långt under alla risknivåer Allt avfall kan hanteras som normalt industriavfall efter 500 år, dvs med handskar, glasögon och munskydd i dragskåp. Jan Blomgren, SKC 2009-02-12

Kärnkraft och kärnvapen Rent Uran-235 används till kärnvapen (>90 %) Kärnkraftverk använder uran-235, men med låg halt (4 %) Plutonium kan användas till kärnvapen (rent Pu-239) Kärnkraftverk producerar plutonium, men med fel ”blandning” för vapen (Fyra sorters plutonium, bara två fungerar till kärnvapen) Civil kärnkraft skapar inte kärnvapen Man kan i princip använda kärnkraftverk för att göra vapen, men för svårt och dyrt Vill man göra vapen är det enklare och billigare att bygga särskilda anläggningar Jan Blomgren, SKC 2009-02-12 9

Kärnkraft och kärnvapen Redan idag: Klyvbart material under internationell kontroll (IAEA, icke-spridningsavtalet) Totalt ca 5-10 anläggningar i världen för anrikning och upparbetning Med kraftig kärnkraftsutbyggnad: 10-20 anläggningar i världen för anrikning och upparbetning Förslag (Hans Blix): lägg dessa direkt under FN-kontroll. Jan Blomgren, SKC 2009-02-12 10

Kärnkraft för nedrustning Civil kärnkraft kan användas för att förstöra kärnvapen Dagens reaktorer: Förstör redan bomber av uran Mindre effektiva att förstöra plutoniumbomber Gen-IV: Mycket effektiva att förstöra bomber av både uran och plutonium Jan Blomgren, SKC 2009-02-12 11

Tidsplan för ny kärnkraft Källa: SNETP Vision Report (www.snetp.eu) Jan Blomgren, SKC 2009-02-12 12

Sverige och ny kärnkraft Sverige kan få säkrad el-tillförsel 100 år framåt med ny kärnkraft Sverige har stor driftskompetens Sverige har världsledande industriföretag inom viktiga sektorer Reaktorstål Säkerhetsanalys Kärnbränsle Utbildningarna expanderar snabbt Svensk kärnkraft kan ersätta fossilkraft i Nordeuropa Jan Blomgren, SKC 2009-02-12 13