Presentation laddar. Vänta.

Presentation laddar. Vänta.

Kemins grunder Föreläsning nr 4 Sid 39-56. Resultatet av kemihistorien Kemins utveckling har lett till många nya material. T.ex. läkemedel, kolfiber,

Liknande presentationer


En presentation över ämnet: "Kemins grunder Föreläsning nr 4 Sid 39-56. Resultatet av kemihistorien Kemins utveckling har lett till många nya material. T.ex. läkemedel, kolfiber,"— Presentationens avskrift:

1 Kemins grunder Föreläsning nr 4 Sid 39-56

2 Resultatet av kemihistorien Kemins utveckling har lett till många nya material. T.ex. läkemedel, kolfiber, olika gummi och plastmaterial, goretex osv. Forslarna gör hela tiden nya upptäckter. T.ex. grafén som är ett nytt material som kanske får stor betydelse i framtiden.

3 Kemin i forntiden Ofta upptäckte man hur man skulle göra av en slump. Men man kunde t.ex. framställa Järn Vissa läkemedel Förädlingsmetoder av mat t.ex. jäsning, inläggningar med ättika eller salt

4 Alkemister För 2000 år sedan fanns människor som forskade och gjorde kemiska experiment. De kallas alkemister. Största målet var att framställa guld.

5 Maria från Alexandria Hon levde i Egypten ungefär vid Jesus tid. Hon gjorde många experiment. Hon blandade t.ex. metaller och såg att de bildade nya ämnen. Hon menade att metallerna var levande och att de parade sig med varandra.

6 De fyra elementen Alkemisterna tänkte sig att världen var byggd av fyra olika element: Jord Vatten Eld Luft Allt annat var blandningar. Genom att ändra på blandningarnas beståndsdelar försökte man framställa guld.

7 Fosfor I sin jakt på att framställa guld stötte alkemisterna ibland på andra ämnen. T.ex. upptäckte alkemisten Henning Brand grundämnet fosfor år Han upptäckte fosfor genom att destillera bort vattnet från urin.

8 Lavoiser 1700 talet Försökte renodla alkemins kunskaper och rensa bort det vidskepliga. Han upptäckte bland annat att eld inte är ett eget ämne och att det behövs syre för att något ska brinna.

9 1800-talet Kemin blev en vetenskap. Man upptäckte många nya grundämnen. De lärde sig styra kemiska reaktioner vilket ledde till en framväxande kemisk industri. Fabriker startades för att framställa t.ex. papper, metaller, plast, livsmedel och läkemedel.

10 Säkerheten Tyvärr var man inte så noga med att kontrollera t.ex. skorstensröken och avfallet från industrierna. Därför kom många skadliga ämnen ut i luften, marken och vattnet. Så småningom blev människorna medvetna om de skadliga ämnena vilket ledde till att kemin fick en ny uppgift: Minska skadorna och undvika liknande misstag.

11 Sökande efter kunskap Ibland gör forskarna oväntade upptäckter. Ibland måste vetenskapen justeras när man kommer på något nytt.

12 elektricitet Från början tänkte man sig att elektricitet rör sig från pluspol till minuspol. När man senare kom på att det är tvärtom var man tvungen att ändra i alla läroböcker och gamla ritningar. Men man orkade inte ändra allt. Därför kan man fortfarande se ritningar där el rör sig från pluspol till negativ pol.

13 Kvasikristaller På 1980-talet vara alla kemister överens om att kristaller bildar regelbundna mönster. Det var något självklart som ingen ifrågasatte. Dan Shektman upptäckte med ett elektronmikroskop att det fanns oregelbundna kristaller.

14 Upprepa experiment Skektman uppmanade andra forskare att upprepa hans experiment flera gånger. Till slut var bevisen så övertygande att andra kemister var tvungna att ge med sig. Shektman fick Nobelpriset i kemi 2011 Nu arbetar man på att försöka använda kvasikristallerna i nya och bättre material.

15 Kemi på liv och död En grillfest inomhus höll på att sluta väldigt illa. När räddningsmanskapet kom till platsen var 10 personer medvetslösa. Vad var det de inte visste? När man grillar bildas rök som innehåller den dödligt giftiga gasen kolmonoxid (CO)

16 Bristande kunskap Är det någon av er som känner till en olyckshändelse som berodde på bristande kunskaper i kemi? Vad hände? Hur hade man kunnat undvika en olycka?

17 Kemin behövs för att göra smarta vardagsval Undvika bli lurad av reklam. Känner någon av er till någon produkt man kan bli lurad av?

18 Kapitel 1 klart vi börjar nu på kapitel 2 Jag har planerat ett prov v 17 efter påsklovet. Då bör vi vara färdiga med kapitel 2. Hur vill ni göra? Det finns två alternativ. Jag tänker mig att vi röstar på torsdag. Majoriteten bestämmer.

19 labbprov Dessutom kommer vi att ha ett laborativt prov. V 22 Vi fortsätter med kemilabbar terminen ut På detta prov testas din förmåga att planera och genomföra en laboration samt förmågan att skriva labbrapport

20 Två alternativ, röstning sker på torsdag. Alternativ 1 Vi har ett stort teoriprov v 17. Sid 6-79 Dessutom tillkommer ett laborativt prov v 22 Alternativ 2 Vi delar upp provet i två delar. Prov v 12 eller v 13 sid 6-49 och v 17 sid Dessutom tillkommer ett laborativt prov v 22

21 Kap 2 Luft och vätgas Försök hålla andan så länge du kan. Klara Färdiga Gå. Vem kunde längst? Vi klarar oss inte så länge utan luft!

22 Atmosfären Runt jordklotet finns ett tunt skikt av gaser. Atmosfären sträcker sig ca 10 mil från markytan. Om jorden var stort som ett äpple skulle atmosfären vara tunnare än äppelskalet.

23 Gaserna i atomsfären De vanligaste gaserna i atmosfären är: Kvävgas ca 78% Syrgas ca 21% Resten, ca 1 % utgörs av ädelgaser, koldioxid och vattenånga. Argon är en ädelgas

24 Torra gaser Fördelningen av olika gaser i atmosfären bygger på torra gaser. Mängden vattenånga varierar mellan 0 och 4 % Vattenånga bildas när vatten från hav, sjöar och fuktig mark avdunstar.

25 Mindre än 1 % av allt vatten på jorden är dricksvatten

26 Varm luft kan ta upp mer vattenånga Man kan mäta luftfuktighet. Vanlig luftfuktighet är ca 70% Det kan vara 100% Högre luftfuktighet gör att vattenångan kondenserar. Det bildas vattendroppar

27 Syre sitter ihop två och två, O 2 Vi behöver syrgas för vår andning och förbränningen i cellerna. Det krävs syre för att något ska brinna. Om det brinner dåligt, ofullständig förbränning, bildas en giftig gas. Kolmonoxid CO

28 Användning av syrgas Sjuka patienter med svårigheter att andas. Piloter som flyger på hög höjd där luften är tunnare. Inom industrin vid framställning av järn och stål. Man kan få riktigt vitt papper genom att bleka pappersmassa med syrgas.

29 oxider Kemiska föreningar där syre ingår. T.ex. Koldioxid Kväveoxider Svaveloxider Järnoxid CO 2 och CO SO 2 NO och NO 2 kväveoxid och Dikväveoxid FeO

30 Scheele upptäckte syret på 1700-talet Den svenske kemisten Carl Wilhelm Scheele upptäckte gasen syre 1773 Flera samtida kemister upptäckte denna gas.

31 Kväve N Kväve är ett grundämne som precis som syre förekommer parvis N 2 Flytande kväve – 196 °C Kylmedel vid t.ex. frystorkning Råvara till gödningsämnen, färgämnen och livsmedel

32 Separation av gaser Man kan utnyttja gasernas olika kokpunkt. Först kyler man ned luft ( -200 °C) så att den blir flytande. Vid olika temperaturer kan man sedan skilja ut olika gaser. Kväve -196 °C Argon -189 °C Syre -183 °C

33 Arbetsuppgifter Läs sid och Gör instuderingsfrågor sid 42 och sid 56 Vi röstar på torsdag alternativ 1 (stort prov v 17) eller alternativ 2 (2st delprov v 12 eller 13 + v 17)


Ladda ner ppt "Kemins grunder Föreläsning nr 4 Sid 39-56. Resultatet av kemihistorien Kemins utveckling har lett till många nya material. T.ex. läkemedel, kolfiber,"

Liknande presentationer


Google-annonser