IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier

Slides:



Advertisements
Liknande presentationer
Ellära.
Advertisements

ELLÄRA Kapitel 3. Efter avsnittet ska du:  veta vad som menas med att ett föremål är elektriskt laddat  kunna förklara vad elektricitet är  veta vad.
Elektroniska filter William Sandqvist En verklig signal … Verkliga signaler är svårtolkade. De är ofta störda av brus och brum. Brum.
Vad menas med statisk elektricitet?
Introduktion till växelström
Elsäkerhet.
Ellära Fysik 1 / A Översiktlig beskrivning av en del av innehållet i Ellära – Fysik A För djupare studier hänvisar jag till kurslitteratur som finns.
Kom igång med DSO-X 2014A Oscilloskopet har inbyggda ”tränings-spänningar” Anslut två mätsladdar med prob till Demouttagen. Starta oscilloskopet. Tryck.
Elektrisk energi och effekt. Elektrisk effekt  Elektrisk effekt anger hur många elektroner som förflyttas av spänningen varje sekund.  Effekten beräknas.
Elektricitet och magnetism 2
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
Spolen och Kondensatorn motverkar förändringar
Elektricitet Trådkurs 6
Ellära och magnetism.
El- och elektronik.
IE1206 Inbyggd Elektronik F1 F2
Kretselement på grafisk form
IE1206 Inbyggd Elektronik F1 F2
IE1206 Inbyggd Elektronik F1 F2
IE1206 Inbyggd Elektronik F1 F2
ELLÄRA.
Exempel. Komplex tvåpol E0
IE1206 Inbyggd Elektronik F1 F2
Ellära.
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
IE1206 Inbyggd Elektronik F1 F2
Visardiagram och fasförskjutning
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
William Sandqvist Lab 1 Några slides att repetera inför Lab 1 William Sandqvist
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
Elektricitet Vad är det egentligen?.
Magnetism Hur fungerar det då?.
Superpositionsprincipen
Elkraft 7.5 hp distans: Kap. 5 Faskompensering 5:1
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
William Sandqvist Optokomponenter Alla halvledarkomponenter har optiska egenskaper och detta utnyttjas numera i en rad viktiga komponenter.
William Sandqvist Typtenta Ellära IF1330 vt uppgifter om totalt 30p. Godkändgräns 15p. Bonus från web-uppgifterna 6p. Giltighetstid.
William Sandqvist Sluten strömkrets? Man har två glödlampor för 220 V och två strömbrytare. Nu vill man ansluta de båda lamporna till 220.
IE1206 Inbyggd Elektronik F1 F2
Resistans Resistorsymbolen skrivs på två sätt:
William Sandqvist Lab 3 Några slides att repetera inför Lab 3 William Sandqvist
William Sandqvist Lab 2 Några slides att repetera inför Lab 2 William Sandqvist
Mål för kursmomentet Ellära-Magnetism i ämnet Fysik år 8.
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
IE1206 Inbyggd Elektronik Transienter PWM Visare j  PWM CCP KAP/IND-sensor F1 F3 F6 F8 F2 Ö1 F9 Ö4F7 tentamen William Sandqvist PIC-block.
IE1206 Inbyggd Elektronik F1 F2
IE1206 Inbyggd Elektronik F1 F2
Förra föreläsningen: Transformatorn
IF1330 Ellära Växelströmskretsar j  -räkning Enkla filter F/Ö1 F/Ö4 F/Ö6 F/Ö10 F/Ö13 F/Ö15 F/Ö2F/Ö3 F/Ö12 tentamen William Sandqvist F/Ö5.
IE1206 Inbyggd Elektronik F1 F2
IF1330 Ellära Växelströmskretsar j  -räkning Enkla filter F/Ö1 F/Ö4 F/Ö6 F/Ö10 F/Ö13 F/Ö15 F/Ö2F/Ö3 F/Ö12 tentamen William Sandqvist F/Ö5.
ELLÄRA.
Ellära och magnetism.
IE1206 Inbyggd Elektronik F1 F2
IE1206 Inbyggd Elektronik Transienter PWM Visare j  PWM CCP KAP/IND-sensor F1 F3 F6 F8 F2 Ö1 F9 Ö4F7 tentamen William Sandqvist PIC-block.
IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier
IE1206 Inbyggd Elektronik Transienter PWM Visare j  PWM CCP KAP/IND-sensor F1 F3 F6 F8 F2 Ö1 F9 Ö4F7 tentamen William Sandqvist PIC-block.
IE1206 Inbyggd Elektronik F1 F2
Frågor och svar Sant eller falskt
Elektrisk energi. Effektlagen Hur stor effekt en elektrisk apparat har räknar man ut genom att multiplicera spänningen med strömmen. Sambandet kallas.
Elektriska kretsars i boken Motstånd-resistans s
El lära pass 2 Kjell Lusth.
ELLÄRA Göran Stenman, Ursviksskolan 6-9, Ursviken –
Elektricitet ELEKTRICITET.
ELLÄRA.
Lärare Mats Hutter Leif Hjärtström
Ellära Elektricitet. Vad kommer laddningarna ifrån?
ELLÄRA.
Presentationens avskrift:

William Sandqvist william@kth.se IF1330 Ellära F/Ö1 F/Ö2 F/Ö3 Strömkretslära Mätinstrument Batterier F/Ö4 F/Ö5 Likströmsnät Tvåpolsatsen KK1 LAB1 Mätning av U och I F/Ö6 F/Ö7 Magnetkrets Kondensator Transienter Tvåpol mät och sim KK2 LAB2 F/Ö8 F/Ö9 Växelström Effekt KK3 LAB3 Oscilloskopet Växelströmskretsar j-räkning F/Ö10 F/Ö11 F/Ö12 Enkla filter F/Ö13 F/Ö14 KK4 LAB4 Filter resonans F/Ö15 tentamen Trafo Ömsinduktans Föreläsningar och övningar bygger på varandra! Ta alltid igen det Du missat! Läs på i förväg – delta i undervisningen – arbeta igenom materialet efteråt! William Sandqvist william@kth.se

Växelströmseffekt, momentanvärde i R Resistor:  = 0 Spänning och ström är i fas, effekten varierar med dubbla frekvens-en! Därför flimrar glöd-lampor med 100 Hz. William Sandqvist william@kth.se

Växelströmseffekt, momentanvärde i C Kondensator:  = -90° effekten ”pendlar” fram och tillbaka med dubbla frek-vensen. Över en period är nettoeffekten ”0”. Ingen effektförbrukning i en kondensator! William Sandqvist william@kth.se

Växelströmseffekt, momentanvärde i L Induktor:  = +90° effekten ”pendlar” fram och tillbaka med dubbla frek-vensen. Över en period är nettoeffekten ”0”. Ingen effektförbrukning i en spole! William Sandqvist william@kth.se

Växelströmseffekt, momentanvärde i Z Impedans Z:  = … effekten ”pendlar” fram och tillbaka med dubbla frek-vensen. Se oscilloskop demon vid lab. Effekten har ett positivt netto, som förbrukas av nätets resistorer. William Sandqvist william@kth.se

William Sandqvist william@kth.se

Aktiv, reaktiv och skenbar effekt I allmänhet är det medeleffekten P man är intresserad av. Eftersom cos(2t …) har medelvärdet ”0”, så blir effektens medelvärde UI·cos. Termen ”cos” brukar kallas för effektfaktorn. På grund av dålig ”märkutrustning” skrivs effektfaktorn ibland med bokstäver som COSFI. Observera att cos() = cos(-). Egentligen bör man också ange om kresen är IND eller KAP, men eftersom de allra flesta utrustningar är IND så underförstås detta oftast! William Sandqvist william@kth.se

Aktiv, reaktiv och skenbar effekt P är den aktiva, verkliga effekten. Om P är positiv tillförs kretsen effekt. Enheten är W, watt. S är skenbar effekt, spänning och ström utan hänsyn tagen till fasvridning. Enheten är (oegentligt) VA, volt-ampere. Q är reaktiv effekt. Detta är en ren ”räknestorhet”, som ger ett mått på effektpendlingen under en period. En induktiv krets har positivt Q och sägs förbruka reaktiv effekt, medan en kapacitiv krets har negativt Q och sägs avge reaktiv effekt. Enheten är (oegentligt) VAr, volt-ampere-reaktivt. William Sandqvist william@kth.se

William Sandqvist william@kth.se Effekt-triangeln P och Q är ”vinkelräta” (sin och cos) så S är därför hypotenusa i en rätvinklig triangel – effekt-triangeln. Har man flera effektförbrukare kan man addera P och Q enligt: Obs! Q från kondensatorer ska adderas med minustecken. William Sandqvist william@kth.se

William Sandqvist william@kth.se

William Sandqvist william@kth.se 24V-lampa till 230V nätet? a) Kan man ansluta en 24V indikatorlampa via ett seriemot-stånd direkt till nätet? R blir varmt. Verkningsgrad  10%. William Sandqvist william@kth.se

William Sandqvist william@kth.se 24V-lampa till 230V nätet? b) Kan man ansluta en 24V indikatorlampa via en seriekonden-sator direkt till nätet? Ingen effektförlust i kondensatorn. Verkningsgrad  100%. William Sandqvist william@kth.se

William Sandqvist william@kth.se 24V-lampa till 230V nätet? ? William Sandqvist william@kth.se

William Sandqvist william@kth.se 24V-lampa till 230V nätet? ? William Sandqvist william@kth.se

William Sandqvist william@kth.se 24V-lampa till 230V nätet? ? William Sandqvist william@kth.se

William Sandqvist william@kth.se

William Sandqvist william@kth.se Kraftkomposanter Från fysiken kommer vi ihåg kraft-komposanter. Det är den kraftkompo-sant som är i vägens riktning som gör arbetet! På samma sätt är det bara den ”del” av strömmen som har samma riktning som spänningen som ger upphov till effekten i växelströmskretsarna. William Sandqvist william@kth.se

William Sandqvist william@kth.se Strömkomposanter I effektuttrycket kan Icos ses som en strömkomposant IP i spänningen U:s riktning. P = IP·U . ( IQ = Isin är motsvarande reaktiva strömkomposanten ) William Sandqvist william@kth.se

Hur stor blir totalströmmen? I en verkstadslokal står rader av elektriska maskiner, alla har märkplåtar med uppgifter om strömförbrukning och effektfaktor. Hur stor blir totalströmmen I och resulterande cos ? William Sandqvist william@kth.se

William Sandqvist william@kth.se Räcker säkringen? (14.2) En student bor i en 1:a med nätspänningen 220 V och med 10 A säkring i elcentralen. Kan man dammsuga i lägenheten med värme-elementet inkopplat utan att säkringen går? Dammsugarens ström är 5 A och den har effekt-faktorn cosfi 0,8. Värmeelementet har effekten 1200 W. William Sandqvist william@kth.se

William Sandqvist william@kth.se Räcker säkringen? (14.2) Dammsugarens strömkomposanter ( ID = 5 A, cos = 0,8 ) : William Sandqvist william@kth.se

William Sandqvist william@kth.se Räcker säkringen? (14.2) Dammsugarens strömkomposanter ( ID = 5 A, cos = 0,8 ) : Elementets strömkomposanter ( vi antar att elementet är rent resistivt och då har cos = 1 ) : William Sandqvist william@kth.se

William Sandqvist william@kth.se Räcker säkringen? (14.2) Dammsugarens strömkomposanter ( ID = 5 A, cos = 0,8 ) : Elementets strömkomposanter ( vi antar att elementet är rent resistivt och då har cos = 1 ) : Totala strömmen I : William Sandqvist william@kth.se

William Sandqvist william@kth.se Räcker säkringen? (14.2) Dammsugarens strömkomposanter ( ID = 5 A, cos = 0,8 ) : Elementets strömkomposanter ( vi antar att elementet är rent resistivt och då har cos = 1 ) : Totala strömmen I : Säkringen håller! William Sandqvist william@kth.se

William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Urladdningsröret R, reaktor L . William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) Z 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Urladdningsröret R, reaktor L . Beräkna Z William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) Z 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Urladdningsröret R, reaktor L . Beräkna Z William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) R 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna R William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) R 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna R All effekt utvecklas i resistorer. William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) L 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna L William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) L 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna L William Sandqvist william@kth.se

Lysrörsarmaturen (14.1) cos 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna cos William Sandqvist william@kth.se

Lysrörsarmaturen (14.1) cos 40W Lysrör 220 V, 50 Hz, 0,41 A och 48 W. Beräkna cos William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) Effekt kan beräknas då spänning och ström är i fas.  U och IP är i fas.  I och UR är i fas. William Sandqvist william@kth.se

William Sandqvist william@kth.se Lysrörsarmaturen (14.1) Fasvridningen mellan spänning och ström innebär att en del av den ström I som elverket levererar inte används till den aktiva effekten. Den onödiga strömdelen orsakar också den över-föringsförluster. Elbolagens tariffer innehåller därför straff-avgifter för dåligt cosfi. William Sandqvist william@kth.se

William Sandqvist william@kth.se Faskompensering (14.1) Genom att bygga in en kondensator C, så kommer pendlingen av reaktiv effekt att ske lokalt utan överföringsförluster. Endast den nödvändiga strömmen I’ levereras. Strömmen IL blir densamma som den tidigare strömmen I. William Sandqvist william@kth.se

William Sandqvist william@kth.se Faskompensering (14.1) QL = QC William Sandqvist william@kth.se

William Sandqvist william@kth.se Faskompensering (14.1) Pris c:a 50:- William Sandqvist william@kth.se

William Sandqvist william@kth.se Effekt-triangel (14.1) Effekt-triangel. Utan och med faskompensering. William Sandqvist william@kth.se

William Sandqvist william@kth.se

William Sandqvist william@kth.se ( Komplex effekt ) Effekt-triangel och strömkomposanter är tillräckliga metoder för de effektberäkningar man kan behöva utföra i kraftnätet. Inom tex. radioteknikområdet kan det kanske finnas behov av en konsekvent komplex metod för effektberäkningar. Den komplexa (skenbara) effekten definieras då som produkten mellan komplex spänning och den komplexa strömmens kom-plexkonjugat. William Sandqvist william@kth.se

William Sandqvist william@kth.se