Kap 1 - Algebra och funktioner

Slides:



Advertisements
Liknande presentationer
Linjära funktioner & ekvationssystem – Ma B
Advertisements

Kurvor, derivator och integraler
MaB: Andragradsfunktioner
X-mas algebra Är du redo? Klicka!!.
Andragradsfunktioner & Andragradsekvationer
Kap 1 - Algebra och linjära modeller
MaB: Ekvationssystem Allmänt
ATT KUNNA TILL PROV MATMAT03c1
Levnadsvillkor och resursfördelning
Numeriska beräkningar i Naturvetenskap och Teknik
MaB: Andragradsekvationer
INFÖR NATIONELLA PROVET
Sekant, tangent, ändringskvot och derivata för en funktion
Kap 2 – Förändringshastigheter och derivator
Algebra och ekvationer
Presskonferen s 15 dec Stark konjunktur och stigande inflation Stark tillväxt i omvärlden och i Sverige Kraftig ökning i sysselsättningen Utlåning.
Procent.
Kap 1 - Algebra och funktioner
ESO seminarium Per Borgs presentation.
GENOMGÅNG Exponentialfunktioner Logaritmer Negativ exponent.
Logaritmer.
Kap 2 - Algebra och ickelinjära modeller
KOMPLETTERING AV MA1202 MATMAT02bb OK8028 Versionsdatum:
KAP 6 – GRAFER OCH FUNKTIONER
Kap 1 - Algebra och linjära modeller Lösta uppgifter
Excel 2003 Grundkurs Lektion 4 Mahmud Al Hakim 1.
Lotka-Volterra: predator-bytes-modell
MATEMATIK 2b Att kunna till prov 2.
MATMAT02b – UPPGIFT 10 Pass VCP Certification
Musikkompendium Test. Musikkompendium Test 2 Musikkompendium Test 3.
 Viktig förberedelse för mer avancerad problemlösning  Verktyg för att underlätta beräkningar  Och jo, man har nytta av algebra, men ofta arbetar vi.
Samband och förändring. Delen i procent Finns två metoder. Antingen räknar man först 1 % (genom att dividera med 100) och multiplicerar till den procenten.
1 Icke-linjär regression Sid (i kapitel 16.1)
Manada.se Algebra och funktioner. 1.1 Algebra och polynom Förkunskaper: Grundläggande algebra Konjugatregeln och kvadreringsreglerna Andragradsekvationer.
Manada.se Kapitel 6 Linjära och exponentiella modeller.
Manada.se Kapitel 4 Ekvationer och formler. 4.1 Ekvationer och uttryck.
Manada.se Geometrisk summa och linjär optimering.
Manada.se Förändringshastighet och derivator. Beräkna f´(2) (2/5) × 2^(-3/5) ≈ 0, … Uppgift 2332, sid 98 Matematik 3bc VUX-boken manada.se.
INFÖR NATIONELLA PROV MATMAT01b.
Kap 2 – Förändringshastigheter och derivator
Lite matterepetition Räknesätten, bråk, förkorta, parenteser
Kap 2 – Förändringshastigheter och derivator
Kurvor, derivator och integraler
Kap 1 - Algebra och funktioner
Att rita en funktion i ett koordinatsystem
Ett tema om befolkningen i världen
Kap 1 - Algebra och linjära modeller
Kap 2 - Algebra och ickelinjära modeller
Befolkningsprognos för Mölndals stad 2017−2027
Kap 2 - Algebra och ickelinjära modeller
Kap 1 - Algebra och funktioner
Kap 1 - Algebra och linjära modeller
INFÖR NATIONELLA PROV MATMAT01b.
INFÖR NATIONELLA PROVET
INFÖR NATIONELLA PROVET
Funktioner och orienterande översikt av farmaceutiska tillämpningar
2016: Ökade intäkter, men också ökade kostnader Kommunsektorn +22 mdr Landsting och regioner +3 mdr
KAP 6 – GRAFER OCH FUNKTIONER
KAP 6 – GRAFER OCH FUNKTIONER
Algebra och icke-linjära modeller
Aritmetik & algebra Geometri & bevis Förändring & procent Funktioner
Välfärdens finansiering
Geografi Henrik Carlsson.
Hit har vi kommit! Nu går vi vidare!.
Kapitel 2 Förändringshastighet och derivator manada.se.
Hit har vi kommit! Nu går vi vidare!.
KAP 6 – GRAFER OCH FUNKTIONER
Kap 1 - Algebra och funktioner
GENOMGÅNG 2.1 Ändringskvoter Begreppet derivata.
Algebra och icke-linjära modeller
Presentationens avskrift:

Kap 1 - Algebra och funktioner

Funktioner

Funktioner

Funktioner VÄRDEMÄNGD DEFINITIONSMÄNGD

Räta linjens ekvation

Räta linjens ekvation m = 1

Räta linjens ekvation m = 6

Räta linjens ekvation

Räta linjens ekvation

Räta linjens ekvation

Andragradsekvationer

DESMOS Klicka på bilden för att gå till DESMOS

Buskar på rad Y = 5x + 3

Buskar på rad Y = 5x + 3

Buskar på rad Y = 5x + 3

Andragradsekvationer Inget nollställe Ett nollställe (dubbelrot) Två nollställen NOLLSTÄLLE ÄR DETSAMMA SOM SKÄRNINGSPUNKT MED X-AXELN

Andragradsekvationer NOLLSTÄLLEN

Andragradsekvationer Lösningsformeln Halva koefficienten för x med ombytt tecken Kvadraten på halva koefficienten för x Konstanta termen med ombytt tecken X = SKRIV DETTA MED DINA EGNA ORD!

Andragradsekvationer Symmetrilinje Minimipunkt

DESMOS Klicka på bilden för att gå till DESMOS

Logaritmer ”2 är 10-logaritmen för 100”

Logaritmer ”3 är 10-logaritmen för 1000”

Logaritmer ”x är 10-logaritmen för 7” ”x är 8-logaritmen för 5”

Logaritmer Enligt räknaren…

Logaritmer (1) (1) lg(3×4) = 1,07918124605 --- lg(3)+lg(4) = 1,07918124605 [test] (2) lg(3*4) = 1,07918124605 --- lg(3)+lg(4) = 1,07918124605 lg(4/3) = 0,124938736608 --- lg(4)-lg(3) = 0,124938736608 lg(3^4) = 1,90848501888 --- 4*lg(3) = 1,90848501888 (2) lg(4/3) = 0,124938736608 --- lg(4)-lg(3) = 0,124938736608 [test] (3) (3) lg(3^4) = 1,90848501888 --- 4×lg(3) = 1,90848501888 [test] 25

Logaritmlagar Exempel: TESTA!

Logaritmlagar Exempel: TESTA!

Logaritmlagar Exempel: TESTA!

Logaritmer med olika baser 4 är 3-logaritmen för 81 4 är den exponent till 3 som ger 81 4 är vad 3 skall upphöjas till för att ge svaret 81

Logaritmer – ett exempel

Logaritmer – ett exempel På räknaren: lg(17)/lg(7) = 1,45598364109

Logaritmer – samma sak?

Logaritmer – NEJ!

Halveringstid Y0 = begynnelsemängd T = halveringstid X = 3/(lg(2))*2400 = 23917,8822832 x = (3/lg(2))*24000 = 239178,822832 [2,4 × 105] 34

Exponetialfunktioner & potensfunktioner

Potensfunktioner C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år

Potensfunktioner C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då: Svar: Värdet ökade med i genomsnitt 5,9 % per år.

Exponentialfunktioner C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år

Exponentialfunktioner C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år Fråga: En stad har folkmängden 50 000 invånare. Folkmängden förväntas öka med 2% varje år. Hur lång tid tar det till dess att folkmängden är 60 000? Lösning: Svar: Efter c:a 9 år är folkmängden 60 000

Exponentialfunktioner

Exponentialfunktioner

Exponentialfunktioner

Vilken är exponentialfunktionen? Vad vet vi om a?

Vilken är exponentialfunktionen? Jag hittar två punkter Exponentialfunktion Insättning av (0,5) ger:

Vilken är exponentialfunktionen? Insättning av (1,4) ger: Den sökta exponentialfunktion:

Vilken är exponentialfunktionen? Vad vet vi om a?

Vilken är exponentialfunktionen? Vad vet vi om a?

Folkmängd Folkmängden ökar med 5 % varje år. Fakta Folkmängden ökar med 5 % varje år. Första året ökar folkmängden med 750 personer. Uppgift Hur stor är folkmängden om 10 år?

Folkmängd Folkmängd från början: Folkmängd om 10 år:

Befolkningsproblem C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då:

Befolkningsproblem C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då: På räknaren: (3,2/2,4)^(1/5) = 1,05922384105… Svar: Värdet ökade med i genomsnitt 5,9 % per år.

Befolkningsproblem C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år Fråga: En stad har folkmängden 50 000 invånare. Folkmängden förväntas öka med 2% varje år. Hur lång tid tar det till dess att folkmängden är 60 000? Lösning: Svar: Efter c:a 9 år är folkmängden 60 000

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Om denna ökning fortsätter – Hur många bor det i staden i år?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem HUR LAGRAR DU VÄRDEN I DIN RÄKNARE? Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare? HUR LAGRAR DU VÄRDEN I DIN RÄKNARE?

Befolkningsproblem HUR LAGRAR DU VÄRDEN I DIN RÄKNARE? Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare? HUR LAGRAR DU VÄRDEN I DIN RÄKNARE?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?

Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?