Kap 1 - Algebra och funktioner
1.1 Algebra och polynom
POLYNOM Vid straffkast i basketboll är kastkurvan en parabel. Den kan beskrivas med andragradspolynomet y = 2,15 + 2,1x – 0,41x2
Algebra och funktioner
y = 2,15 + 2,1x – 0,41x2 Terminologi +2,15 är en konstantterm +2,1x och -0,41x2 är variabeltermer talen +2,1 och -0,41 kallas koefficienter y innehåller värdet på polynomet (uttrycket)
Potenslagarna SE FORMELBLADET!
Definitioner ETT GENOM
Definitioner
Definitioner
Definitioner
Definitioner
Lagar för kvadratrötter
Lagar för kvadratrötter
Absolutbelopp Absolutbeloppet, eller absolutvärdet av ett tal x betecknas |x| och är ett positivt reellt tal eller noll och kan ges den geometriska tolkningen som ett tals avstånd till origo eller 0-punkten i det fall talet kan representeras på tallinjen. Källa: http://sv.wikipedia.org/wiki/Absolutbelopp
Absolutbelopp
Absolutbelopp
Absolutbelopp, ett exempel
Absolutbelopp, ett exempel
Andragradsekvationer Lösningsformeln Halva koefficienten för x med ombytt tecken Kvadraten på halva koefficienten för x Konstanta termen med ombytt tecken X = SKRIV DETTA MED DINA EGNA ORD!
Andragradsekvationer Symmetrilinje Minimipunkt
Uppgift 1101 & 1102
a och b är polynomets nollställen Andragradspolynom a och b är polynomets nollställen
Andragradspolynom
Andragradspolynom Vad heter denna funktion?
Andragradspolynom Nollställen
Andragradspolynom Funktionen heter:
Andragradspolynom Vad heter denna funktion?
Andragradspolynom Vad heter denna funktion?
ARBETA NEDÅT! Räkning med polynom (8 + 2x) + (3 – 4x) =
(a + b)2 = a2 + 2ab + b2 (a - b)2 = a2 - 2ab + b2 Kvadreringsreglerna 1:a kvadreringsregeln (a + b)2 = a2 + 2ab + b2 2:a kvadreringsregeln (a - b)2 = a2 - 2ab + b2
(a + b)(a - b) = a2 – b2 (2x + 3)(2x - 3) = 4x2 – 9 Konjugatregeln (a + b)(a - b) = a2 – b2 (2x + 3)(2x - 3) = 4x2 – 9 (2x)2 –32 = 4x2 - 9
Faktorisera Skriv om följande tal och uttryck så att det blir en multiplikation i stället 7 x 8 189 x 10 2(x+1) 7x(x-7) (p+2)(p-2) (x+3)(x+3) = (x+3)² (5p-8)²
1.2 Rationella uttryck
Faktorisera Skriv om följande tal och uttryck så att det blir en multiplikation i stället
Faktorisera Skriv om följande tal och uttryck så att det blir en multiplikation i stället
TALMÄNGDER
Rationella uttryck
Rationella uttryck För vilka variabelvärden är uttrycket inte definierat? Svar: Ej definierat för x = -2 och x = -3
Rationella uttryck Testa! För vilka variabelvärden är uttrycket inte definierat? Svar: Ej definierat för x = -2 och x = -3 Testa!
Förlängning
Förkortning
Enklaste form
Förlängning, exempel
Förlängning, exempel
Enklaste form, exempel
Enklaste form, exempel
Enklaste form, exempel Hur vet man att det är just talet 10 man skall förlänga med?
Varning!! OBS!!
Varning!! VARFÖR!
Varning!!
Bryt ut (-1)
Bryt ut -1
1.3 Funktioner
Funktioner
Funktioner VÄRDEMÄNGD DEFINITIONSMÄNGD
Räta linjens ekvation
Räta linjens ekvation m = 1
Räta linjens ekvation m = 6
Räta linjens ekvation
Räta linjens ekvation
Räta linjens ekvation
Andragradsekvationer
DESMOS Klicka på bilden för att gå till DESMOS
Buskar på rad Y = 5x + 3
Buskar på rad Y = 5x + 3
Buskar på rad Y = 5x + 3
Andragradsekvationer Inget nollställe Ett nollställe (dubbelrot) Två nollställen NOLLSTÄLLE ÄR DETSAMMA SOM SKÄRNINGSPUNKT MED X-AXELN
Andragradsekvationer NOLLSTÄLLEN
Andragradsekvationer Lösningsformeln Halva koefficienten för x med ombytt tecken Kvadraten på halva koefficienten för x Konstanta termen med ombytt tecken X = SKRIV DETTA MED DINA EGNA ORD!
Andragradsekvationer Symmetrilinje Minimipunkt
DESMOS Klicka på bilden för att gå till DESMOS
Logaritmer ”2 är 10-logaritmen för 100”
Logaritmer ”3 är 10-logaritmen för 1000”
Logaritmer ”x är 10-logaritmen för 7” ”x är 8-logaritmen för 5”
Logaritmer Enligt räknaren…
Logaritmer (1) (1) lg(3×4) = 1,07918124605 --- lg(3)+lg(4) = 1,07918124605 [test] (2) lg(3*4) = 1,07918124605 --- lg(3)+lg(4) = 1,07918124605 lg(4/3) = 0,124938736608 --- lg(4)-lg(3) = 0,124938736608 lg(3^4) = 1,90848501888 --- 4*lg(3) = 1,90848501888 (2) lg(4/3) = 0,124938736608 --- lg(4)-lg(3) = 0,124938736608 [test] (3) (3) lg(3^4) = 1,90848501888 --- 4×lg(3) = 1,90848501888 [test] 76
Logaritmlagar Exempel: TESTA!
Logaritmlagar Exempel: TESTA!
Logaritmlagar Exempel: TESTA!
Logaritmer med olika baser 4 är 3-logaritmen för 81 4 är den exponent till 3 som ger 81 4 är vad 3 skall upphöjas till för att ge svaret 81
Logariter – ett exempel
Logariter – ett exempel På räknaren: lg(17)/lg(7) = 1,45598364109
Logariter – samma sak?
Logariter – NEJ!
Halveringstid Y0 = begynnelsemängd T = halveringstid X = 3/(lg(2))*2400 = 23917,8822832 x = (3/lg(2))*24000 = 239178,822832 [2,4 × 105] 85
Exponetialfunktioner & potensfunktioner
Potensfunktioner C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år
Potensfunktioner C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då: Svar: Värdet ökade med i genomsnitt 5,9 % per år.
Exponentialfunktioner C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år
Exponentialfunktioner C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år Fråga: En stad har folkmängden 50 000 invånare. Folkmängden förväntas öka med 2% varje år. Hur lång tid tar det till dess att folkmängden är 60 000? Lösning: Svar: Efter c:a 9 år är folkmängden 60 000
Exponentialfunktioner
Exponentialfunktioner
Exponentialfunktioner
Vilken är exponentialfunktionen? Vad vet vi om a?
Vilken är exponentialfunktionen? Jag hittar två punkter Exponentialfunktion Insättning av (0,5) ger:
Vilken är exponentialfunktionen? Insättning av (1,4) ger: Den sökta exponentialfunktion:
Vilken är exponentialfunktionen? Vad vet vi om a?
Vilken är exponentialfunktionen? Vad vet vi om a?
Folkmängd Folkmängden ökar med 5 % varje år. Fakta Folkmängden ökar med 5 % varje år. Första året ökar folkmängden med 750 personer. Uppgift Hur stor är folkmängden om 10 år?
Folkmängd Folkmängd från början: Folkmängd om 10 år:
Sätt namn på grafen
Sätt namn på grafen
Kan du det här? 1 (s. 64)
Kan du det här? 1 (s. 64)
Kan du det här? 1 (s. 64)
VAD HETER FUNKTIONEN? F(x) = (x - 3)(x + 2)
VAD HETER FUNKTIONEN? f(x)=(x+2)(x-3) f(x)=x²-3x+2x-6 f(x)=x²-x-6
VAD HETER FUNKTIONEN? y=-x^2-x+6
VAD HETER FUNKTIONEN? Men detta stämmer ju inte! Vad göra…? Testa!! y=-x^2-x+6 Testa!! [ Länk till DESMOS ]
VAD HETER FUNKTIONERNA? y=-x^2-x+6
ATT KUNNA TILL PROV 1 ATT KUNNA TILL PROV 1
Befolkningsproblem C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då:
Befolkningsproblem C är ”startvärde” x är förändringsfaktor a kan exempelvis vara tid i år Uppgift: Värdet på en villa ökade från 2,4 miljoner kr till 3,2 miljoner kr under en femårsperiod. Vilken är den genomsnittliga årliga procentuella värdeökningen? Lösning: Vi sätter den årliga förändringsfaktorn till x och får då: På räknaren: (3,2/2,4)^(1/5) = 1,05922384105… Svar: Värdet ökade med i genomsnitt 5,9 % per år.
Befolkningsproblem C är ”startvärde” a är förändringsfaktor x kan exempelvis vara tid i år Fråga: En stad har folkmängden 50 000 invånare. Folkmängden förväntas öka med 2% varje år. Hur lång tid tar det till dess att folkmängden är 60 000? Lösning: Svar: Efter c:a 9 år är folkmängden 60 000
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Om denna ökning fortsätter – Hur många bor det i staden i år?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122 000 invånare och år 2000 fanns det 199 911 invånare i staden. Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem HUR LAGRAR DU VÄRDEN I DIN RÄKNARE? Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare? HUR LAGRAR DU VÄRDEN I DIN RÄKNARE?
Befolkningsproblem HUR LAGRAR DU VÄRDEN I DIN RÄKNARE? Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare? HUR LAGRAR DU VÄRDEN I DIN RÄKNARE?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
Befolkningsproblem Invånarantalet i en stad ökar exponentiellt. År 1980 fanns det 122000 invånare och år 2000 fanns det 199911 invånare i staden. Vi antar att den procentuella ökningen är densamma varje år. Vilken är den årliga procentuella ökningen? Om denna ökning fortsätter – Hur många bor det i staden i år? Om denna ökning fortsätter – När kommer staden att ha en halv miljon invånare?
ATT KUNNA TILL PROV 1 ATT KUNNA TILL PROV 1