Ladda ner presentationen
Presentation laddar. Vänta.
Publicerades avEmil Strömberg
1
1 Sårbarhetsanalyser av vägnät - gjort sedan förra mötet Referensgruppsmöte 16 november 2009
2
2 Väglänkars betydelse för omledning
3
3 Motivering Mått på väglänkars betydelsefullhet speglar typiskt deras roll under normala förhållanden - ”primär” betydelsefullhet Vi vill mäta länkars betydelsefullhet som omledningsalternativ till andra länkar under avbrott - ”sekundär” betydelsefullhet Även betydelsefullhet i denna mening kan motivera högre prioritering vid investeringar
4
4 Primär betydelsefullhet: Betydelsefullhet under normala förhållanden Utgår från två tidigare studerade mått: 1.Länkflöde (fordon per timme) Fångar hur många som utnyttjar länken och påverkas av störning 2.Total försening vid avbrott på länk (fordonstimmar) - vårt typiska sårbarhetsmått Fångar också kvalitén på bästa alternativ
5
5 Sekundär betydelsefullhet: Betydelsefullhet som omledningsalternativ Flödesbaserad sekundär betydelsefullhet: Flöde som leds över till länken vid avbrott på annan länk Fångar hur många som kan komma att utnyttja länken Förseningsbaserad sekundär betydelsefullhet: Extra försening som skulle drabba omlett flöde om det skulle bli avbrott även på denna länk Fångar också kvalitén på näst bästa alternativ
6
6 Tre start/målpunkter: A, B, C Sex länkar: a, b, c, d, e, f Betrakta länk f … Ett exempel
7
7 f används normalt (bara) för resor mellan B och C Normalt länkflöde: F f = F BC Ett exempel Primär betydelsefullhet
8
8 Avbrott på länk f: flödet leds om över länk b och d Total försening vid avbrott på f ≈ F BC ·(T b + T d - T f - T e )
9
9 Fortfarande intresserade av länk f … Resor mellan A och B använder normalt länk a och d Ett exempel Sekundär betydelsefullhet
10
10 Om det blir avbrott på länk a så ligger länk f på bästa alternativa rutt Omlett flöde till f vid avbrott på a: F a = F AB Ett exempel Flödesbaserad sekundär betydelsefullhet
11
11 Total försening för omledd trafik ≈ F AB ·(T c + T f + T e - T a - T d ) … Ett exempel Förseningsbaserad sekundär betydelsefullhet
12
12 Ett exempel Förseningsbaserad sekundär betydelsefullhet Total försening för omledd trafik ≈ F AB ·(T c + T f + T e - T a - T d ) Vid avbrott på både a och f: Länk c, b och d är näst bästa alternativ. Total försening ≈ F AB ·(T c + T b + T d - T a - T d ) Skillnad i försening med och utan f ≈ F AB ·(T b + T d - T e - T f )
13
13 Summering över alla länkar För att hitta den totala betydelsefullheten av f upprepar vi beräkningarna och summerar över alla start/målpunkter A, B och C och alla andra länkar a, b, c, d och e Vi viktar ihop länkar t.ex. proportionellt mot deras längd - enkel modell för hur sannolika avbrott är på varje länk Alltså mer värdefullt att utgöra alternativ till länk med hög sannolikhet till avbrott
14
14 Exempel forts. Inga alternativa rutter Vid avbrott på både d och f finns inga rutter mellan A och B eller mellan B och C Vi beräknar försening som tid till avbrottet upphör - genomsnittlig försening halva avbrottets längd
15
15 Tillämpning Norra Sverige Studieområde: 18 kommuner 12 timmars avbrott Nätverk, reseefterfrågan och restider som vanligt från modellsystemet SAMPERS
16
16 Resultat Primär betydelsefullhet - normalt länkflöde Det normala länkflödet avslöjar ”ryggraden” i det regionala vägnätet
17
17 Resultat Primär betydelsefullhet - total försening vid avbrott Länk betydelsefull om flödet och/eller genomsnittlig resenärs försening är stora Många stora vägar betydelsefulla p.g.a. höga flöden, många små p.g.a. dåliga/inga alternativ
18
18 Resultat Flödesbaserad sekundär betydelsefullhet Länkar parallellt med E4:an och runt städer är betydelsefulla p.g.a. stora omledda flöden Länkar som är alternativ till långa länkar är betydelsefulla p.g.a. hög sannolikhet för avbrott
19
19 Resultat Förseningsbaserad sekundär betydelsefullhet Länk betydelsefull om genomsnittligt omlett flöde och/eller genomsnittligt skillnad i försening med/utan länken är stora Betydelsefullhet förskjuts än mer till glesa områden p.g.a. dåliga/inga näst bästa alternativ
20
20 Slutsatser Vi identifierar länkar som är betydelsefulla som omledningsalternativ Analysen kan också användas under aktiv omledning Två mått - vilket ska vi använda? Om avbrott på enskild länk är isolerad händelse: Använd flödesbaserad sekundär betydelsefullhet Vid risk för fler avbrott (samma källa eller kedjereaktion): Använd förseningsbaserad sekundär betydelsefullhet Kan utvidgas till mer än två samtidiga avbrott - ökar dock beräkningsbördan kraftigt
21
21 Resenärskostnader p.g.a. långa, oväntade avbrott
22
22 Motivering Vilket ekonomiskt värde ska sättas på de förseningar som uppstår vid oväntade avbrott i vägnätet? Flera effekter kan motivera annat (högre) värde än normalt restidsvärde: Stora restidsökningar - kostnader kan öka mer än proportionellt mot restiden p.g.a. minskad tid till dagens aktiviteter Oväntade händelser - större kostnader p.g.a. att resenärer kortsiktigt inte kan anpassa sitt resande fullständigt
23
23 Effekten av restidsökningar En resa sker mellan två aktiviteter - t.ex. från hemmet till arbetet på morgonen Kostnad uppstår eftersom vi hellre vill tillbringa tid hemma eller på jobbet än i bilen En ökad restid innebär att vi måste lämna hemmet tidigare eller komma senare till jobbet, vilket innebär högre kostnader Hur vi anpassar avresetidpunkten beror på hur vi värderar tid hemma jämfört med på jobbet Stora restidsökningar kan innebära att det är bättre att ställa in resan helt
24
24 Effekten av information Första dagen/dagarna efter avbrott råder bristfällig information om förhållandena Helt oinformerade resenärer lämnar hemmet vid samma tid som normalt - ökad restid gör att de kommer sent till jobbet Resenärer kan också ha osäker/felaktig information - överkompenserar och reser onödigt tidigt - kommer tidigare än normalt till jobbet Efter en tid lär sig resenärer om förhållandena och kan anpassa avresetidpunkter optimalt
25
25 Effekten av flexibla arbetstider Flexibla arbetstider gör att tid förlorad på morgonen kan tas igen på kvällen Denna fördel kan dock motverkas om restidsökning drabbar både morgon- och kvällsresan
26
26 Numeriska värden I internationell litteratur finns skattningar av värdet av tid hemma, på jobbet och i bilen för olika tider på dygnet Dessa värden kan användas för att få ett hum om kostnaderna av restidsökningar under olika antaganden om resenärers information och restidsökningens storlek Mer exakta värden skulle kräva mer ändamålsanpassad skattning med svenska data - något för framtiden?
27
27 Exempel - inte slutliga värden
28
28 Tillämpning i sårbarhetsanalys Arbetet är tänkt att leda till en förenklad modell som kan användas i sårbarhetsanalyser Kan ge en bättre modell för kostnaderna av inställda resor - länkar utan omvägar
Liknande presentationer
© 2024 SlidePlayer.se Inc.
All rights reserved.