Presentation laddar. Vänta.

Presentation laddar. Vänta.

Otätheten suger • Konsekvenser • Kostnader • Krav

Liknande presentationer


En presentation över ämnet: "Otätheten suger • Konsekvenser • Kostnader • Krav"— Presentationens avskrift:

1 Otätheten suger • Konsekvenser • Kostnader • Krav
Information från projektet Lufttäthetsfrågorna i byggprocessen – Etapp B. Tekniska konsekvenser och lönsamhetskalkyler Otätheten suger

2 Lufttätt informationsmaterial
• Otätheten suger, ppt • Täta tätt, affisch • Lufttäthetens Lov, tidningen • Lufttäthetens Handbok – problem och möjligheter Lufttätt informationsmaterial

3 utan för att det är otätt!
Det möglar inte för att det är lufttätt utan för att det är otätt! • Täta diffusions/luftspärrar. • Mekanisk ventilation. • Återvinning på frånluften. Hus ska andas med sitt ventilations- system! Otäthet ger mögel

4 Önskad utveckling från A till B
Total kostnad, LCC Täthet A B Önskad utveckling

5 Konsekvenser av luftotäthet
• Ökad energianvändning • Försämrad termisk komfort • Dålig luftkvalitet • Fuktskador Konsekvenser av luftotäthet

6 Minskat värmemotstånd
Ökad energianvändning på grund av Minskat värmemotstånd Vindskydd 0,22–4,9 • 10-5 m2/m2s. 10 m höjd. Uppmätt ökad energianvändning 15 % för väggarna per år. Antag förluster: 0,33 ventilation, 0,33 fönster o dörrar, 0,33 klimatskal (varav 0,66 yttervägg) 0,15 • 0,33 • 0,66 ≈ 0,3 Ökning 3–4 % av den totala värmeförlusten i det här exemplet. Minskat värmemotstånd

7 Ökat ventilationsflöde
Ökad energianvändning på grund av Ökat ventilationsflöde Uppvärmning av småhus 130 m2. Otäthet från 1–6 oms/h. (Svensk normtäthet, 0,8 l/m2s motsvarar 2–3 oms/h) Vid stora otätheter (6 oms/h) står infiltration/otäthet för ca 30 % av värmeförlusterna Ökat ventilationsflöde

8 Ökat ventilationsflöde
Ökad energianvändning på grund av Ökat ventilationsflöde Sex våningar, 1050 m2 0,8 l/m2s och 2,0 l/m2s i stadsmiljö respektive i vindutsatt läge. 1 kr/kWh Otätheten kostar 50– per år! Ökat ventilationsflöde

9 Minskad effektivitet hos VVX
Ökad energianvändning på grund av Minskad effektivitet hos VVX Sex våningar, 1050 m2. Otätt 2,0 l/m2s i stadsmiljö. Ett hus med VVX, ett utan. 1 kr/kWh. 20 procent mindre energianvändning med VVX! Kanske 40 % vid normtäthet, 0,8 l/m2s Minskad effektivitet hos VVX

10 Försämrad termisk komfort
Ökad energianvändning på grund av Försämrad termisk komfort Värmeutbyte med omgivningen • Konvektion • Strålning • Ledning • Andning och avdunstning PPD För att beskriva hur man upplever den termiska komforten finns begreppet PPD (Predicted Percentage of Dissatisfied). Försämrad termisk komfort

11 Försämrad termisk komfort
Ökad energianvändning på grund av Försämrad termisk komfort Drag Ofta kring fönster och dörrar och vid tak- och golvvinkel. Redan vid lufthastigheter över 0,1 m/s blir vissa personer besvärade. Termogram tak – vägg Drag

12 Vertikal temperaturskillnad
Ökad energianvändning på grund av Försämrad termisk komfort Vertikal temperaturskillnad En stor vertikal temperaturskillnad kan orsaka obehag. Andelen missnöjda personer som funktion av den vertikala temperaturskillnaden. Enligt SS EN ISO 7730. (0,1 och 1,1 över golvet för sittande personer). Vertikal temperaturskillnad

13 Försämrad termisk komfort
Ökad energianvändning på grund av Försämrad termisk komfort Kalla golv/tak Luftläckage vid golvvinkeln, vid kallvindar (via t.ex. dåligt tätade imkanaler), vid mellanbjälklag. Andelen missnöjda som en funktion av golvtemperaturen enligt SS EN ISO 7730. Kalla golv/tak

14 Försämrad termisk komfort
Ökad energianvändning på grund av Försämrad termisk komfort Otäthet vid syllen -10 ºC ute och 22 ºC inne och en tryckskillnad på 20 Pa. • Tätremsa av extruderad polystyren XPS. • Papp mot slät betong. Enligt BBR golvtemp > 16 ºC, > 18 ºC i hygienrum > 20 ºC i lokaler avsedda för barn. Vistelsezonen börjar 0,6 m från ytterväggen. Otäthet vid syllen

15 Skillnad i strålningstemperatur
Ökad energianvändning på grund av Försämrad termisk komfort Skillnader i strålningstemperatur Många är t.ex. känsliga för kalla väggar och fönster. Andelen missnöjda som funktion av skillnader i strålnings-temperaturen orsakade av en nerkyld vägg enligt SS EN ISO 7730. Skillnad i strålningstemperatur

16 Klassindelning och krav på termisk komfort
• SS EN ISO 7730 ger förslag på klassindelning av inomhusklimatet. • Utgår från det förväntade PPD-värdet. • Kvalitetskategorin B (motsvarar < 10 procent missnöjda) Rekommenderade värden för kvalitetskategori B enligt SS EN ISO 7730. Klassindelning

17 Klassindelning och krav på termisk komfort
BBR allmänt råd anvisningar om termisk komfort. (Vistelsezon: Över 0,1 m och under 2,0 m höjd. 0,6 m från ytterväggar, 1,0 m vid fönster och dörr.) Termisk komfort i Boverkets byggregler, avsnitt 6:42, Allmänt råd. Ytterligare regler ges ut av Arbetsmiljöverket och Socialstyrelsen. Klassindelning

18 Värdering termisk komfort
Värdering av försämrad termisk komfort Antag att den kallare delen utgör 1/6 av rymdvinkeln. För samma operativa temperatur måste lufttemperaturen höjas. Enkelt överslag ger följande ekvation: Tl = 23 ºC En höjning från 22 till 23 grader betyder cirka fem procents ökning av energibehovet i detta rum. Värdering termisk komfort

19 Värdering termisk komfort
Värdering av försämrad termisk komfort Försämrad termisk komfort ger minskad produktivitet Övertemp Undertemp Samband mellan relativ prestation (i procent) i kontorsarbete och andelen missnöjda med den termiska komforten Värdering termisk komfort

20 Värdering termisk komfort
Värdering av försämrad termisk komfort Kostnader för bad will, klagomål etc • Hyresgästen klagar. • Hyresgästen talar illa om fastighetsägaren och fastigheten. • Hyresgästen flyttar. • Direkta kostnader – telefonsamtal, besiktning och administration. • Indirekta kostnader – bad will, intäktsbortfall, betalningsovillighet. Värdering termisk komfort

21 Dålig luftkvalitet Otätheter ger en oönskad spridningsväg för gaser och partiklar. • Spridning via entrédörrar till trapphuset. • Från lägenhet till trapphus i de nedre våningsplanen. • Från trapphus till lägenhet i de övre våningsplanen. Dålig luftkvalitet

22 Spridning av brandgaser
Dålig luftkvalitet Spridning av brandgaser Lägenheter är normalt egna brandceller. BBR:”Brandcellsskiljande byggnadsdelar skall vara täta mot genomsläpp av flammor och gaser …”. Denna täthet kontrolleras sällan. BBR har inget kvantifierat krav på tillåten otäthet. Spridning av brandgaser

23 Spridning av markradon
Dålig luftkvalitet Spridning av markradon Tre förutsättningar • Radon i marken • Lufttrycksskillnad (inv undertryck) • Otätheter i byggnadsdelar mot mark Medverkar Termiska drivkrafterna Ventilationssystem med självdrag, mekanisk frånluft. Täta Genomföringar (vatten, avlopp, golvbrunnar, elledningar etc), Anslutningar golv–vägg Sprickor pga. sättningar eller krympning. Lättklinkerblock, bör putsas på bägge sidor för att ge fullgod lufttäthet. Spridning av markradon

24 Dålig luft utifrån Exempel: • Partiklar • Ozon • Kolmonoxid
Dålig luftkvalitet Dålig luft utifrån Exempel: • Partiklar • Ozon • Kolmonoxid • Kvävedioxid • Svaveldioxid • Bly Även damm, lösningsmedel, PCB m.m. Uteluften filtreras och/eller luftintagen placeras där luftkvaliteten är god. Dålig luft utifrån

25 Ventilationssystemets funktion
Dålig luftkvalitet Ventilationssystemets funktion En minskning av ventilationsflödet kan ge minskad produktivitet och därmed värderas ekonomiskt. Dålig luftväxling kan också medföra ökad sjukfrånvaro, framför allt korttidsfrånvaro. (En halvering av luftflödet skulle kunna öka sjukfrånvaron med 30 procent.) Sambandet mellan relativ produktivitet och andelen missnöjda med luftkvaliteten. Värdena ur Seppänen & Fisk (2005) och gäller maskinskrivning. Ventilationssystemets funktion

26 Fuktskador av luftläckage
Otätt vindsbjälklag Fuktkonvektion: Fukt transporteras med en luftström, kyls och kondenserar • Fukt i inneluften • Lufttrycksskillnad • Otätheter i byggnadsskalet Fuktskador

27 Fuktskador av luftläckage
Otät luftspärr mellan tak och vägg gav fuktskada i nybyggd villa Genom otäthet i luftspärren läcker varm luft ut och kondenserar mot tak och takstol. Rimfrost i fuktskadat tak. Isolering med lösull. (I ett likadant hus med samma otätheter men med frånluftsventilation uppstod ingen skada. Frånluftsventilationen ger ett svagt undertryck i huset som gör att ingen fuktig och varm luft trycks ut på vinden.) Fuktskador

28 Kalkyl Faktorer • Kortsiktiga hårda faktorer ingår naturligt i kalkylen. • Långsiktigt hårda faktorer fördelas över användningstiden. • Mjuka korta faktorer görs jämförbara mellan alternativen. • Mjuka långa faktorer är svåra att värdera men viktiga i en helhetsbedömning. Ett sätt är att poängbedöma och vikta faktorerna sinsemellan, så att de kan jämföras även om det inte sker i reda pengar. Kalkyl

29 Kalkyl Särintäkter • Energianvändning, från 2 l/m2s till 0,8 l/m2s – ca 55 kWh/m2år kr/kWh. • Termisk komfort, uthyrningsgrad, hyresnivå. 25–50 kr/m2år. Produktivitet, 62,5–125 kr/m2år • Luftkvalitet, ljudisolering. • Fuktskador, 10 kkr/år och 5 kr/m2år. Särintäkter

30 Kalkyl • Arbetskostnader, 0,5–1 tim/m2. 400 kr/tim.
Särkostnader • Arbetskostnader, ,5–1 tim/m kr/tim. • Utbildning 20– kr. • Kontrollkostnader, ca 0,05 tim/m2. • Övriga kostnader 20–40 kr/m2. Särkostnader

31 Kalkylmodell Modellen finns som exelblad och kan laddas ner från Kalkylmodell

32 Kalkyl för hyreshus Fastighets-ägaren antas bygga två liknande hus vardera 2000 m2 BRA. Kalkyl för hyreshus

33 Kalkyl för kontorshus Fastighets-ägaren antas bygga fyra liknade kontor om 2000 m2 BRA vardera. Kalkylför kontorshus

34 Byggherrens krav för lufttät byggnad
Byggherrens ambition avspeglas i • eget engagemang • kravformulering • kompetens hos anlitade aktörer • utbildning och information • eget arbete med att följa upp krav • konsekvenser om krav ej uppfylls • gratifikationer om kraven uppfylls Byggherrens krav

35 Byggherrens checklista
• formulera tydliga krav avseende lufttäthet • tydliggöra ansvarsfördelning för att de olika kraven skall uppfyllas • kontrollera/säkerställa att de upphandlade aktörerna har erforderlig kompetens • följa upp att kraven uppfyllts Byggherrens checklista

36 Byggherrens krav – projektering
Krav 1: Ansvarig Krav 2: Täthetskrav alt a: ≤ 0,2 l/m2s alt b: ≤ 0,4 l/m2s alt c: ≤ 0,6 l/m2s täthetskrav för fönster och dörrar Krav 3: Beständiga lösningar Krav 4: Redovisning / dokumentation Byggherrens krav 1–4

37 Byggherrens krav – byggskede
Krav 5: En ansvarig Krav 6: Arbetsplanering i samråd med projektör, plan för egenkontroller Krav 7: Utbildning innan arbetena påbörjas – objektsanpassad Krav 8: Dokumentation av egenkontroller Krav 9: Tidig läckagemätning Krav 10: Verifierande mätning vid färdigställandet alt a: ≤ 0,2 l/m2s alt b: ≤ 0,4 l/m2s alt c: ≤ 0,6 l/m2s Byggherrens krav 5–10

38 Täthetsprovning Täthetsprovning enligt EN13829:2000 med läckagesökning
• Stora byggnader: Ange om täthetskravet gäller del av byggnad, t.ex. brandcell och om täthetsprovningen skall ske - med mottryck i angränsande utrymmen - utan mottryck i angränsande utrymmen Täthetsprovning

39 Radhus i Glumslöv AB Landskronahem prime project AB Generalentreprenad
2004–2005 35 lgh radhus och parhus Krav: 0,16 l/m2s (uppmätt 0,1 l/m2s) • Specialist på tätning • Dagliga kontroller • Utbildade snickare • Täthetsprovningar Träregelstomme med indragen luftspärr. Platta på mark med underliggande isolering. Skarvar i luftspärr tätade med dubbelhäftande bitumenband. Glumslöv 1

40 Radhus i Glumslöv Skarvar i luftspärr tätade med dubbelhäftande bitumenband. Glumslöv 2

41 Radhus i Lindås Egnahemsbolaget 2001 20 radhus-lägenheter 4 huskroppar
• Krav på låg energianvändning – krav på god lufttäthet • Målvärde och kravvärde (0,2 resp 0,8 l/m2s) • Forskargrupp deltog • Kontroller och täthetsprovning • Resultat 0,2–0,44 l/m2s Lindås 1

42 Radhus i Lindås Täthetsprovning när pe-folien och skivbeklädnader var monterade så att brister kunde åtgärdas. Stor omsorg om detaljer, utformning och utförande. Lindås 2

43 Exempel på krav i andra länder
Norge: oms/h för småhus och radhus 2 oms/h för andra byggnader upp till 2 våningar 1,5 oms/h för andra byggnader över 2 våningar Danmark: 1,5 l/m2s – ytan avser golvytan Finland: 1 oms/h Tyskland/Österrike: 1,5 oms/h för ventilerade byggnader Passivhusstandard i Tyskland: 0,6 oms/h Krav i andra länder

44 Checklista BHs uppföljning av projektering 1
Enkel checklista för byggherrens uppföljning av av projektering Checklista BHs uppföljning av projektering 1

45 Checklista BHs uppföljning av projektering 2
Enkel checklista för byggherrens uppföljning av av projektering Checklista BHs uppföljning av projektering 2

46 Exempel på kontrollplan
Enkel checklista för byggherrens kontroll av entreprenörens egenkontroller Exempel på kontrollplan för lufttätt byggande Exempel på kontrollplan

47 Vad säger BBR? 5:62 ”Brandcellsskiljande byggnadsdelar skall vara täta mot genomsläpp av flammor och gaser …” 6:255 ”Klimatskärmen bör ha tillräckligt god täthet i förhållande till det valda ventilationssystemet för en god funktion och för injustering av flöden i de enskilda rummen.” 6:531 ”För att undvika skador pga fuktkonvektion bör byggnadens klimatskiljande delar ha så god lufttäthet som möjligt.” 9:4 ”Byggnadens klimatskärm skall vara så tät att det genomsnittliga luftläckaget vid 50 Pa tryckskillnad inte överstiger 0,6 l/ m2s”. Gäller endast specialfall (<100 m2 etc). Det gamla kravet 0,8 l/ m2s vid 50 Pa finns inte längre. Lämplig täthet ligger i intervallet 0,1–0,6 l/ m2s vid 50 Pa. Vad säger BBR?

48 Sammanfattning • Många negativa konsekvenser av dålig lufttäthet: ökad energianvändning, försämrad innemiljö och fuktskador • Förbättrad lufttäthet är lönsam! • Byggherren/beställaren måste ställa krav! • Lämplig täthet: i intervallet 0,1–0,6 l/m2s vid 50 Pa Man kan aldrig bygga för tätt – glöm inte ventilationen! Sammanfattning


Ladda ner ppt "Otätheten suger • Konsekvenser • Kostnader • Krav"

Liknande presentationer


Google-annonser