Ladda ner presentationen
1
Ny kärnkraft för en uthållig framtid
Generation-IV Ny kärnkraft för en uthållig framtid Jan Blomgren Svenskt Kärntekniskt Centrum Jan Blomgren, SKC
2
Kärnkraft idag 31 % av Europas el, nära 50 % av Sveriges basförsörjning, stabila priser Kärnkraft dominerar EU:s koldioxidfria el EU:s utsläppsmål (2020/2050) kan inte nås utan kärnkraft SNETP - Sustainable Nuclear Energy Technology Platform ( EU-sanktionerat organ för utveckling av uthållig kärnkraft Alla Europas stora aktörer medlemmar Generation II (Lättvattenreaktorer, LWR) = dagens kärnkraft Upprustningar för ökad livslängd, bättre prestanda och säkerhet Generation III: Avancerade LWR – kraftigt ökad säkerhet, bättre prestanda Byggs i Finland och Frankrike Många EU-länder på gång I drift till år 2100 Jan Blomgren, SKC 2
3
Kärnkraftens utveckling
Generation II Generation III Evolution av Gen-II Generation IV Revolution Typ Lättvattenreaktorer (LWR) Utvecklade LWR Metallkylning, Gaskylning Driftsstart Prototyper 2020 Industri 2040 Exempel Alla svenska Finlands nya (Olkiluoto 3) Skall byggas i Frankrike Specifikt Första industri- generationen Bättre prestanda, Höjd säkerhet Återvinning av bränsle Generation I = prototyper Jan Blomgren, SKC
4
Varför GenIII-reaktorer?
Säkerhet: Enklare (!) system säkrare reaktor Mindre teknik, mer passiv säkerhet via naturlagar Exempel: naturlig cirkulation istället för pumpar Robustare byggda Exempel: “Härdsmälte-fälla” = byggd för att klara stora olyckor Ekonomi: Högre verkningsgrad effektivare bränsleanvändning (Hög byggkostnad i Finland pga kultursvårigheter, inte tekniska problem…) Jan Blomgren, SKC 4
5
Europas strategi för Gen-IV
SNETP - Strategic Research Agenda (November 2008) Parallell utveckling av flera olika reaktortekniker Redan prövad teknik: Natriumkylning (SFR, Sodium cooled Fast Reactor) Alternativ: Blykylning (LFR), gaskylning (GFR) Teknikerna fungerar som koncept Forskningen handlar om att utveckla industri av koncepten: Enklare design, ökad säkerhet, acceptabel ekonomi, stryktåliga material,… 2012: design av första prototyp klar (SFR i Frankrike) 2020: driftsstart av första prototyp MWe, som Sveriges minsta reaktorer idag Jan Blomgren, SKC
6
Varför GenIV-reaktorer?
Uthållighet: Dagens kärnkraft använder ca 1 % av uranet Ingen brist på uran inom 100 år, men på längre sikt Återvinning: Avfallet från dagens reaktorer = bränsle i GenIV-reaktorer 100 ggr effektivare resursanvändning I praktiken outtömlig resurs: Dagens avfall används som bränsle (räcker i sekler!) Uran av låg kvalitet kan användas senare Uran i havsvatten kan utnyttjas på lång sikt Avspänning: Dagens kärnvapen kan användas som bränsle (Görs redan, men dagens reaktorer klarar inte allt material) Jan Blomgren, SKC
7
Varför finns detta inte redan?
Svårare teknik Inte vattenkylning Kylning med smält metall (natrium, bly, vismut) Tuff miljö för materialen Hög temperatur Stark korrosion Kraftig bestrålning Svårare att tillverka bränslen Radioaktiv råvara (avfall från dagens reaktorer) Fjärrstyrd tillverkning (dyrt!) Komplicerad kemi Tekniken finns idag, men är dyrare än dagens kärnkraft Kostnaderna ungefär som för vindkraft idag – men bör kunna sänkas med ökad erfarenhet och teknikutveckling Jan Blomgren, SKC
8
Kärnkraftens avfall Två typer av avfall:
Klyvningsrester Farliga även utanför kroppen 1 m betong, 2-3 m vatten bra skydd Borta på ca 500 år Trans-uraner Ämnen tyngre än uran, plutonium vanligast Ganska svagt radioaktiva Farliga bara om man äter/dricker/inandas dem Keramiskt stabilt material, löser sig inte i vatten år till naturlig radioaktivitet, men naturlig nivå är långt under alla risknivåer Allt avfall kan hanteras som normalt industriavfall efter 500 år, dvs med handskar, glasögon och munskydd i dragskåp. Jan Blomgren, SKC
9
Kärnkraft och kärnvapen
Rent Uran-235 används till kärnvapen (>90 %) Kärnkraftverk använder uran-235, men med låg halt (4 %) Plutonium kan användas till kärnvapen (rent Pu-239) Kärnkraftverk producerar plutonium, men med fel ”blandning” för vapen (Fyra sorters plutonium, bara två fungerar till kärnvapen) Civil kärnkraft skapar inte kärnvapen Man kan i princip använda kärnkraftverk för att göra vapen, men för svårt och dyrt Vill man göra vapen är det enklare och billigare att bygga särskilda anläggningar Jan Blomgren, SKC 9
10
Kärnkraft och kärnvapen
Redan idag: Klyvbart material under internationell kontroll (IAEA, icke-spridningsavtalet) Totalt ca 5-10 anläggningar i världen för anrikning och upparbetning Med kraftig kärnkraftsutbyggnad: 10-20 anläggningar i världen för anrikning och upparbetning Förslag (Hans Blix): lägg dessa direkt under FN-kontroll. Jan Blomgren, SKC 10
11
Kärnkraft för nedrustning
Civil kärnkraft kan användas för att förstöra kärnvapen Dagens reaktorer: Förstör redan bomber av uran Mindre effektiva att förstöra plutoniumbomber Gen-IV: Mycket effektiva att förstöra bomber av både uran och plutonium Jan Blomgren, SKC 11
12
Tidsplan för ny kärnkraft
Källa: SNETP Vision Report ( Jan Blomgren, SKC 12
13
Sverige och ny kärnkraft
Sverige kan få säkrad el-tillförsel 100 år framåt med ny kärnkraft Sverige har stor driftskompetens Sverige har världsledande industriföretag inom viktiga sektorer Reaktorstål Säkerhetsanalys Kärnbränsle Utbildningarna expanderar snabbt Svensk kärnkraft kan ersätta fossilkraft i Nordeuropa Jan Blomgren, SKC 13
Liknande presentationer
© 2024 SlidePlayer.se Inc.
All rights reserved.