SIEMENS perspective on TURBO POWER Siemens Industrial Turbomachinery Ulf Rådeklint Rev: 1 mars 2010 1 1
Future requirements on Power Generation Parameters in Worldwide Power Generation Deregulation / Liberalization Globalization Privatization Emission trading Global Trends in Worldwide Power Generation Environmental Protection Reliability of Supply Social Welfare Growing world population Economic growth Increase per capita energy consumption Development of energy prices Increasing power demand New requirements on power generation => Majority of the worlds electricity is generated by Thermal Turbomachines! Where does TURBO POWER fit in?
TURBO POWER focuses on key areas Some Key areas Turbine – steam Part load operation, blade dynamics, higher steam temperature, flexibility for solar power plant operation, Turbine – gas Cooling air reduction, aerodynamics, blade dynamics, higher temperatures Combustion Fuel flexibility, part load emissions, flame stability Compression High stage load, operation flexibility, blade dynamics Operation and maintenance Early warning detection, operational flexibility, life cycle cost Thermodynamic processes / New optimised cycles Integrated power plants, CO2 free cycles, media properties => Technology and Methods in the above areas
Development of Thermal Turbomachinery is highly multidisciplinary Aerodynamics and Heat transfer Combustion, Fuels, Chemistry, Environment Performance and thermodynamics Mechanical integrity and life assessments Material and coatings Rotor- and blade dynamics Controls, electrical and auxiliary systems Operation, diagnostics and maintenance
TURBO POWER projects in Turbomachinery Improved efficiency and reliability: COMP WP1-WP5: Forced response Flutter prediction Damping prediction High cycle fatigue lifing
TURBO POWER projects in Turbomachinery 2. Fuel flexibility: COMB 1-3: Syngas combustion Combustion instabilities CFD modelling of syngas combustion
TURBO POWER projects in Turbomachinery 3. Efficiency and reliability enhancements: TURB 1-4: High pressure stage efficiency Film cooling Internal cooling intermediate duct Tip and hub cooling
TURBO POWER projects in Turbomachinery 4. Improved efficiency and reliability: LIFE 1-3: Thermal barrier coating High temperature fatigue life Non-destructive testing methods
TURBO POWER projects in Turbomachinery 5. Improved efficiency and reliability: Process 1-5 Diagnostics and monitoring Properties of H2/CO2 Solar steam turbines Turbomachinery in bio-fuel production Oxyfuel conceptual cycles
Important effects of the programme New and improved technology and methods Competence buildup and skilled people Improved contacts between academia and industry Leading to More efficient and reliable thermal turbomachines and power plants Higher competitiveness of industry and academia Higher degree of innovation Increased possibility for commercialisation of results More sustainable power generation!
Our Vision for the future Solar energy Efficiency enhancements Steam turbines I solar power plants “Reduction” of CO2 100% More efficient components “Reduction” of CO2 10 – 20 % Biomass System solutions Integration of GT,ST and processes “Reduction” of CO2 30 - 50 % Steamturbines for biomass fired combined heat and power plants “Reduction” of CO2 100% MCV fueled gasturbines
Our Vision for the future Carbon Capture and Storage (CCS) New applications Combined cycles utilisation Combinates powergeneration/process industry New turbine cycles and processes Gasturbines fired with biofuel (LCV) Electrical production for the transport sector Hydrogen society! Sequestration of CO2 in power plants ”Reduction” of CO2 90 – 100 % 2020+
Summary Thermal Turbomachines are essential for Power Generation in the world Strive for higher efficiency Cost effective processes Emission reduction More efficient use of fuels Renewable fuels increasing, fuel flexibility Combustion is central for fuel based power production Solar power plants has a large potential in parts of the world Higher degree of integrated power plants and fuel production
Finspångs Slott, som idag ägs av Siemens Industrial Turbomachinery (SIT). Om slottet Slottet byggdes 1668-1685 av Louis De Geer d y. Slottsflyglarna, som uppfördes av Louis de Geers sonson 1742, används som hotell och restaurang för företagets gäster och anställda. Rummen är inredda efter milstolpar i slottets historia. Slottet innehåller även ett slottskapell, som idag används som gudstjänstlokal av Svenska kyrkan. Kanonerna utanför slottet är tillverkade i Finspång 1866 och 1885/86. Om SIT:s historia och verksamhet i Finspång År 1631 köpte holländaren Louis De Geer Finspongs Bruk av Kronan och Finspångs storhetstid inleddes. I flera hundra år var Finspång en av de största kanontillverkarna i världen! Den eran tog ett abrupt slut 1911 då Nordiska Artilleriverken gick bankrutt. Bara två år senare köptes hela industriområdet inklusive Finspångs Slott och omgivningarna av STAL ("Svenska turbinfabriks aktiebolaget Ljungström"). Den något fredligare ångturbintillverkningen inleddes... Vid 1950-talets slut går STAL och De Laval samman och verksamheten samlas i Finspång. Under namnet Stal-Laval utvecklas ångturbindrivna fartygsmaskiner med stor framgång. 1973 började företaget leverera ångturbiner till svenska och finska kärnkraftverk. Idag tillverkas gas- och ångturbiner som försörjer hela världsmarknaden. Företaget i Finspång har haft många namn genom åren: Stal-Laval, ASEA Stal, ABB Stal, ABB Alstom Power och Alstom Power, och nu Siemens Industrial Turbomachinery.