KAP 5 – SANNOLIKHETSLÄRA OCH STATISTIK
GENOMGÅNG 5.1 Grundläggande geometri Omkrets och area Areaenheter Omkrets och area av en cirkel π (pi) Volymenheter Volym Begränsningsarea av rätblock, cylinder och klot
KULOR I PÅSE Varför skriver man P ? Probability Vad är sannolikheten för att man tar en röd kula? Vad är sannolikheten för att man tar en grön kula?
LYCKOHJULET Lyckohjulet nedan snurras två gånger. Bestäm P (samma siffra båda gångerna). P(etta, etta) = P(tvåa , tvåa) = osv... Bestäm P(samma siffra båda gångerna) =
GENOMGÅNG 5.2 Grundläggande geometri Omkrets och area Areaenheter Omkrets och area av en cirkel π (pi) Volymenheter Volym Begränsningsarea av rätblock, cylinder och klot
ATT KASTA 2 TÄRNINGAR 6 olika utfall 36 möjliga utfall T 1 T2 Vad är sannolikheten att få summan 7 vid kast med 2 st. tärningar? T 1 T2 6 olika utfall 36 möjliga utfall
ATT KASTA 2 TÄRNINGAR 6 olika utfall som ger 7 Vad är sannolikheten att INTE få summan 7 vid kast med 2 st tärningar? T 1 T2 6 olika utfall som ger 7 Detta kallas komplementhändelse.
ATT KASTA 2 TÄRNINGAR T 1 T2
SLUMPFÖRSÖK MED FLERA FÖREMÅL
TRÄDDIAGRAM Dra en kula ur urna 1 och lägg den i urna 2. Dra sedan en kula ur urna 2. Hur stor är sannolikheten att den sista kulan är en röd kula? Start! U1 RÖD BLÅ U2 R B R B Sannolikheten att sista kulan är röd är: Observera:
LYCKOHJULET Detta kallas komplementhändelse. Lyckohjulet nedan snurras två gånger. Bestäm sannolikheten för att poängsumman blir mindre än femton. P(åtta, åtta) = P(sjua, åtta) = P(åtta, sjua) = P(mindre än femton) = Detta kallas komplementhändelse.
MARKÖR HÄR!
2016-11-14 Jag kastade i tre mynt i lådan klave, klave, klave Edman kastade i två tärningar sexa, sexa Hur stor är sannolikheten att detta skall ske?
GENOMGÅNG 5.3 Grundläggande geometri Omkrets och area Areaenheter Omkrets och area av en cirkel π (pi) Volymenheter Volym Begränsningsarea av rätblock, cylinder och klot
Statistik ”Lögner, Förbannade Lögner och Statistik.” Ursprunget till denna ramsa sägs vara hämtat från premiärminister Benjamin Disraeli och som sedermera Mark Twain populariserade. Benjamin Disraeli föddes den 21 december 1804 och dog den 19 april 1881 - brittisk politiker och författare. Mark Twain föddes den 30 november 1835 och dog den 21 april 1910 - psuedonym för Samuel Clemens, amerikansk författare och humorist.
Statistik ”Lögner, Förbannade Lögner och Statistik.” Ursprunget till denna ramsa sägs vara hämtat från premiärminister Benjamin Disraeli och som sedermera Mark Twain populariserade. Benjamin Disraeli föddes den 21 december 1804 och dog den 19 april 1881 - brittisk politiker och författare. Mark Twain föddes den 30 november 1835 och dog den 21 april 1910 - psuedonym för Samuel Clemens, amerikansk författare och humorist.
LÄGESMÅTT Typvärde Medelvärde Median
Typvärde Typvärde (kallas även modalvärde) i ett statistiskt datamaterial det värde som förekommer flest gånger. Datamängd: 2, 4, 2, 7, 5, 8, 4, 9, 12, 2, 7, 1, 3 & 10 Datamängd: 2, 4, 2, 7, 5, 8, 4, 9, 12, 2, 7, 1, 3 & 10 Vilket värde är typvärde? 2
Medelvärde Ett medelvärde är ett värde som används för att representera ett genomsnitt för en mängd värden. På räknaren slår man (2+5+8+9+4+7+8)/7 = 6,14285714286… OBS!
Medelvärde Vilket medelvärde har följande talmängd? 4, 6, 7, 1, 0, 7, 9, 13, 2, 3 (4+6+7+1+0+7+9+13+2+3)/10 = 5,2 Medelvärdet är 5,2
MEDIAN Medianen är det tal i en mängd som storleksmässigt ligger i mitten. Av talen 1, 7, 9, 10 och 17 är 9 medianen (medan 8,8 är medelvärdet). För mängder med ett jämnt antal tal definieras medianen som medelvärdet av de två tal som ligger i mitten.
MEDIAN Följande värden är givna: 6 7 0 4 12 7 18 2 2 Bestäm medianen 4 2 0 2 6 7 7 12 18 Svar: Medianen till dessa tal är 6
MEDIAN Följande värden är givna: 7 0 4 12 7 18 2 2 Bestäm medianen ? 4 2 0 2 7 7 12 18 4,5 ? Svar: Medianen till dessa tal är 4,5
Median Vilken median har följande talmängd? 4, 6, 7, 1, 0, 7, 9, 13, 2, 3 0, 1, 2, 3, 4, 6, 7, 7, 9, 13 Medianen är 5
Vilseledande statistik Vilket diagram är bäst? Källa: http://www.webbmatte.se/
Matteboken.se Träna medelvärde, median, typvärde och variationsbredd Träna sannolikhet och statistik
MARKÖR