Presentation laddar. Vänta.

Presentation laddar. Vänta.

1 Beskrivande statistik för två beroende slumpvariabler Vi har som ex observerat X = antal kvadrat-meter och Y = hyrans storlek på 20 lägenheter. För att.

Liknande presentationer


En presentation över ämnet: "1 Beskrivande statistik för två beroende slumpvariabler Vi har som ex observerat X = antal kvadrat-meter och Y = hyrans storlek på 20 lägenheter. För att."— Presentationens avskrift:

1 1 Beskrivande statistik för två beroende slumpvariabler Vi har som ex observerat X = antal kvadrat-meter och Y = hyrans storlek på 20 lägenheter. För att illustrera hur dessa två variabler hör ihop ritar vi ett spridningsdiagram (scatter plot)

2 2 I grafen ser vi ett positivt beroende mellan variablerna. Stora värden på x medför stora värden på y. Ex på samband Antal rum yta på lägenhet Utbildningsnivå lönenivå Hastighet bromssträcka Valreseultat antal pos löften Tillgång till vaccin antal sjuka Befolkningstäthet brottslighet Attityd kön Blodtryck ålder Höjd över havet temperatur

3 3 Anta att vi har n observationer på två s.v. X och Y. Skrivs Med hjälp av dessa n observationer kan vi beräkna sen sk korrelations-koefficienten r som är ett mått på hur starkt två variabler hänger ihop. -1

4 4 Ex: 10 obs på flickors x = vikt, y = längd x y

5 5 Vi räknar ut r

6 6 Korrelationskoefficienten har egentligen sammansättningen Måttet på beroende ligger alltså i täljaren och så standardiserar vi med stickprovsstandardavvikelserna för x och y för att få ett tal som är lättolkat. Det finns en teoretisk korrelation mellan slumpvariabler som vi kallar  (rå), men först

7 7 Vi sammanställer Datamaterial Medelvärde Stickprovsvarians Stickprovsstandaravvikelse s Korrelationskoefficient r Teori Väntevärde E[X] Varians Var[X] Standardavvikelse Korrelation 

8 8 Kap4,4 Teoretisk korrelation 

9 9 läses; Kovariansen mellan slumpvariablerna X och Y. Kovariansen mäter det linjära beroendet mellan X och Y. Den standardiserade kovariansen är korrelationen  Kovariansen beräknas via där

10 10 Vi tittar återigen på ex med lägenheterna X = antal rum i en lägenhet X och Y är beroende, dvs de är relaterade till varann X 1 2 3p(y) 0 Y 1 0,45 0,05 0 0,05 0,25 0,20 0,50 p(x)0,50 0,30 0,201,00

11 11 Detta värde är svårtolkat. Är 0,3 stort eller litet?

12 12 Beräkna  Detta är enklare att förstå. Vi har ganska stark positiv korrelation.

13 13 Kap 4,5 En linjär kombination mellan två slumpvariabler ser ut som där a,b,c är konstanter Vi ska främst studera specialfallet X+Y och summan av n st s.v. Först tittar vi på hur man kan finna sannolikhetsfördelningen för X+Y via ett ex

14 14 Vid ett lotteri kan en lott ge vinst på 0, 20 och 100kr. Låt oss dra två lotter. Vinstchansen är lika vid de båda dragningarna X= vinsten på 1:a lotten Y= vinsten på 2:a lotten X och Y är oberoende X p(y) 0 Y ,5625 0,18 0,0075 0,18 0,0576 0,0024 0,0075 0,0024 0,0001 0,75 0,24 0,01 p(x)0,75 0,24 0,011,00

15 15 Bestäm sannolikhetsfördelningen för totala vinsten S=X+Y= totala vinsten på två lotter ex p(20)=0,18+0,18 p(120)=0,0024+0,0024 s p(s)0,5625 0,36 0,0576 0,015 0,0048 0,0001

16 16 Anta nu lite mer allmänt att vi har n st s.v. som vill tar summan på. Om dessa n s.v. är oberoende så gäller Där


Ladda ner ppt "1 Beskrivande statistik för två beroende slumpvariabler Vi har som ex observerat X = antal kvadrat-meter och Y = hyrans storlek på 20 lägenheter. För att."

Liknande presentationer


Google-annonser