Matematik 1C Tanja Hrnjez

Slides:



Advertisements
Liknande presentationer
Rör vi oss? Det beror på vad vi jämför oss med.
Advertisements

Uppgifter/Läxa Lös uppgifterna: 120, 121, 123, 125, 126, 128, 130, 133, 142, 144, 145.
Hud & hudsjukdomar Fredrik Hieronymus.
Behandlas under 4 kursträffar i mineralmuseet
Administration Distribution Metabolism Exkretion
Kap. 3 Derivator och Integraler
Kapitel 3 Sannolikhet och statistik
Kap. 3 Derivator och Integraler
Sol i Syd Projektdagen 2017 Region Blekinge
SP Sveriges Tekniska Forskningsinstitut
KONJUNKTURINSTITUTET
KPP053, HT2016 MATLAB, Föreläsning 2
Praktiska grejer Lärare: Erik Ramm-Schmidt Läxorna finns på Wilma
Kapitel 1 Algebra och linjära modeller manada.se.
Kursintroduktion Brukarorienterad design
Kapitel 2 Förändringshastigheter och derivator manada.se.
Behandlas under 4 kursträffar i mineralmuseet mars-april 2017
Sällsynta jordartsmetaller
GEOGRAFI.
Så tycker de äldre om äldreomsorgen 2016
Men kolla bildspelet vecka 18 först
Nordiska Lärarorganisationers Samråd
Arbetsgrupp ”Hat och hot mot förtroendevalda”
Är en radikal omställning till hållbar konsumtion möjlig och hur påverkar det våra möjligheter till välbefinnande? Jörgen Larsson Assistant professor in.
X Avrundning och överslagsräkning
Välkommen till.
ULA Kompetenscenter - en del av TPY
VISBY IBKs FÖRENINGSTRÄD
Styrelsen i stallet vecka 20
Framgångsfaktorer för en global projektverksamhet
Gotlands energieffektiviseringsnätverk
Medelhavsbuffé 11/ Bildkavalkad.
Nya regler om energi i BBR
Sannolikhet och statistik
Lagen om Energikartläggning i stora företag
Växtekologisk orienteringskurs
Tularemi.
Information till primärvården Herman Nilsson-Ehle Catharina Lewerin
Inför avtalsrörelsen 2016 Lars Calmfors
Lagen om Energikartläggning i stora företag
KPP053, HT2016 MATLAB, Föreläsning 3
Lars Calmfors Föreläsning 2 för Riksrevisionen 25/2-2016
Fosfor från Östersjöns djupbottnar är problemet
Täthet hos flänsförband mellan stora polyetenrör och ventiler
Arbetsbeskrivning Sportkommittén
Dagens ämnen Matriser Räkneoperationer och räknelagar
Mellankrigstiden
Ledarutveckling över gränserna
Regiongemensam enkät i förskola och familjedaghem 2016
Hur får vi fler att söka till Teknikcollege ?
det är den här processen
Uppföljning av år 2016 HFS-nätverket
BILDSPEL ABISKO, ev. YOUTUBE KLIPP
Visit Karlskoga Degerfors
Vårdprevention - en introduktion för medarbetare på sjukhus
Trygg, säker och samordnad vård- och omsorgsprocess
Föräldraenkät 2017 Förskola
BYGDSAM Anundsjö Grundsunda BLT Nätra.
Nyheter i tredje upplagan av Handbok Riskanalys och Händelseanalys
Så här säljer du med SMS.
Finansiell samordning
Arbetsmarknadsutsikterna hösten 2016
Dagläger MTB i Högbobruk
Sportlovsläger 9-12 feb Årshjulet med läger på skolloven börjar med ett dagläger för våra tävlingsgymnaster Vi hälsar alla gymnasterna i S- och R-ben samt.
Medlemsinfo Tenhults IF
Välkommen till vårt Öppet Hus, SeniorNet Huddinge
Fortum: Lars Modigh Agneta Molinder Synovate Temo: Gun Pettersson
Attraktiv Hemtjänst Introduktion i att utvärdera hemtjänst
Presentation av verksamhetsplan
20% rabatt (På ordinarie priser)
Presentationens avskrift:

Matematik 1C Tanja Hrnjez VEKTORER Matematik 1C Tanja Hrnjez 1/2/2019 tanja0615@gmail.com

Vektorer Definition: Vektor En vektor är ett matematiskt objekt som karaktäriseras av både storlek (magnitud) och riktning. Lika vektorer Vektorer har stor betydelse när man skall beskriva storlekar som kraft och hastighet Man brukar skilja på vektorer och skalärer En vektor är en storhet som har både storlek och riktning, skalärer har endast storlek Exempel på vektorer: kraft, hastighet och acceleration Exempel på skalärer är temperatur, area och energi 1/2/2019 tanja0615@gmail.com

Vektorer Vektorer visas med pilar eftersom en pil har både storlek och riktning. Vektorer som har samma längd och samma riktning är likadana På bilden är vektorerna 𝑎 och 𝑏 lika eftersom de är lika BÅDE till storlek och riktning. 1/2/2019 tanja0615@gmail.com

Vektorer DEFINITION: Motsatta vektorer 𝑢 Motsatta vektorer är vektorer som har motsatt riktning, men samma storlek. 𝑢 𝑣 SATS: Parallella vektorer Om 𝑢 =k∙ 𝑣 , där k är konstant, är vektorerna 𝑢 och 𝑣 parallella. 𝑢 𝑣 1/2/2019 tanja0615@gmail.com

Vektor Storleken på en vektor 𝑢 betecknas med 𝑢 Riktningen på en vektor kan anges på olika sätt, t ex med en vinkel 𝑢 v 1/2/2019 tanja0615@gmail.com

Exempel 1/2/2019 tanja0615@gmail.com

Addition av vektorer 1/2/2019 tanja0615@gmail.com

Addition av vektorer Vi utgår från två parallella vektorer, i detta fall två krafter, där 𝐹 1 =3 N (Newton) och 𝐹 2 =2 N för att visa hur man adderar vektorer. Bestäm F1 + F2. 𝐹1 =3 N 𝐹 1 och 𝐹 2 kallas för komposanter och 𝑅 för resultant. 𝐹2 =2 N 𝑅 = 𝐹1 + 𝐹2 =5 N Addera = “låta vektorer bita varandra i svansen” 1/2/2019 tanja0615@gmail.com

Addition av vektorer Addera motsatta vektorer 𝑎 + 𝑏 = 0 𝑎 + 𝑏 = 0 𝑏 Summan av motsatta vektorer är nollvektor. 1/2/2019 tanja0615@gmail.com

Addition av vektorer Låt oss addera en positiv och en negativ vektor 𝐹 1 + 𝐹 2 där 𝐹 1 =3 N 0ch 𝐹 2 =-2 N. 𝐹 1=3 N 𝐹2 =2 N 𝑅 = 𝐹1 + 𝐹2 =3+ (-2) = 1 N 1/2/2019 tanja0615@gmail.com

Addition av vektorer 𝑎 + 𝑏 = 𝑏 + 𝑎 Låt oss addera vektorer 𝑎 och 𝑏: Addition av vektorer är kommutativ! 𝑎 + 𝑏 = 𝑏 + 𝑎 1/2/2019 tanja0615@gmail.com

Addition av vektorer Addera vektorer 𝑢 1 , 𝑢 2 och 𝑢 3 : 𝑢 1 𝑅 = 𝑢 3 + 𝑢 2 + 𝑢 1 𝑢 1 𝑅 = 𝑢 1 + 𝑢 3 + 𝑢 2 𝑢 2 𝑢 2 𝑢 3 𝑢 3 1/2/2019 tanja0615@gmail.com

Subtraktion av vektorer 1/2/2019 tanja0615@gmail.com

Subtraktion av vektorer Vi utgår från två parallella vektorer, i detta fall två krafter, där 𝐹 1 =3 N (Newton) och 𝐹 2 =2 N för att visa hur man subtraherar vektorer. Bestäm F1 - F2. 𝐹1 =3 N 𝐹2 =2 N 𝑅 = 𝐹1 − 𝐹2 =3-2 = 1 N 1/2/2019 tanja0615@gmail.com

Subtraktion av vektorer 𝑏 𝑏 - 𝑎 𝑏 𝑎 - 𝑏 𝑎 𝑎 𝑏 - 𝑎 𝑏 +(- 𝑎) 𝑏 𝑎 𝑎 - 𝑏 - 𝑏 𝑎 1/2/2019 tanja0615@gmail.com

Vektorer i koordinatsystem 1/2/2019 tanja0615@gmail.com

Vektorer i koordinatsystem Här har vi lagt in en vektor i ett koordinatsystem och den ses som en riktad sträcka från origo till en punkt eller ett koordinatpar (x,y) 𝑢 (x,y) 𝑢 𝑦 x 𝑢 x Här syns det tydligt att 𝑢 = 𝑢 x + 𝑢 y 1/2/2019 tanja0615@gmail.com

Vektorer i koordinatsystem DEFINITION: Basvektorer Basvektorerna 𝑒 𝑥 och 𝑒 𝑦 är två vektorer vinkelräta mot varandra. Basvektornas storlekar är 1, 𝑒 𝑥 = 𝑒 𝑦 =1. Om dessa basvektorer placeras i origo riktade i x- och y-axelns positiva riktningar kallas de ortsvektorer. Det innebär att en vektors komposanter kan skrivas: 𝑢 x = x ∙ 𝑒 𝑥 och 𝑢 y = y ∙ 𝑒 𝑦 där (x,y) är den koordinat där vektor slutar. x y x y 𝑢 (x,y) 𝑢 (4,3) 𝑢 y = y ∙ 𝑒 𝑦 𝑢 y = 3 ∙ 𝑒 𝑦 𝑒 𝑦 𝑒 𝑦 𝑒 𝑥 𝑒 𝑥 1/2/2019 𝑢 x = x ∙ 𝑒 𝑥 𝑢 x = 4 ∙ 𝑒 𝑥

Vektorer i koordinatsystem En vektor kan skrivas som 𝑢 = x ∙ 𝑒 𝑥 +y ∙ 𝑒 𝑦 =(x,y) Vektor i exemplet skulle då bli 𝑢 = 4 ∙ 𝑒 𝑥 +3 ∙ 𝑒 𝑦 =(4,3) Med det menas altså den riktade sträckan, eller vektor, från origo till punkten (4,3). 1/2/2019

Vektorer i koordinatsystem u + v =(2+3,4+1)=(5,5) (4,8) 𝑢 = (2,4) Vad blir 𝑢 + 𝑣 ? 2 ∙ 𝑢 𝑣 = (3,1) x 1/2/2019 tanja0615@gmail.com

Vektorer i koordinatsystem SATS: Räkneregler för vektorer Om 𝑢 1 =( 𝑥 1 , 𝑦 1 ) och 𝑢 2 =( 𝑥 2 , 𝑦 2 ) så gäller: 𝑢 1 + 𝑢 2 =( 𝑥 1 , 𝑦 1 ) + ( 𝑥 2 , 𝑦 2 )= ( 𝑥 1 + 𝑥 2 , 𝑦 1 + 𝑦 2 ) 𝑢 1 − 𝑢 2 =( 𝑥 1 , 𝑦 1 ) - ( 𝑥 2 , 𝑦 2 )= ( 𝑥 1 − 𝑥 2 , 𝑦 1 − 𝑦 2 ) a∙ 𝑢 =(ax,ay) SATS: Storleken av en vektor Storleken av vektorn 𝑢 =(x,y) är 𝑢 = 𝑥 2 + 𝑦 2 1/2/2019 tanja0615@gmail.com

Vektorer i koordinatsystem 1/2/2019 tanja0615@gmail.com

Vektorer och trigonometri När man använder vektorer i tillämpade sammanhang, t ex i fysiken, är riktningen ofta angiven med en vinkel. En basebollspelare slål iväg bollen med vinkel på 45° med utgångshastigheten 25 𝑚 𝑠 . x y 45° 𝑣 =25 𝑚 𝑠 𝑣 𝑥 cos45°= 𝑣 𝑥 25 sin45°= 𝑣 𝑦 25 𝑣 𝑦 längd höjd utslagsvinkel 𝑣 =25 𝑚 𝑠 1/2/2019 tanja0615@gmail.com