Grundlägande statistik,ht 09, AN F5 Kombinatorik (KW 1.6) Ex.: På en matsedel finns tre förrätter, två huvudrätter och två efterrätter. På hur många olika sätt kan en trerätters måltid komponeras? Svar: Illustration: Träddiagram Grundlägande statistik,ht 09, AN
F5 Kombinatorik (forts) Man ska utföra k st operationer. Den första kan utföras på n1 sätt, den andra på n2 sätt o.s.v. Multiplikationsprincipen: Totala antalet sätt att utföra de k operationerna i tur och ordning är: n1 × n2 × … × nk Grundlägande statistik,ht 09, AN
F5 Kombinatorik (forts.) n olika element kan permuteras (ordnas) på n·(n-1)·(n-2)·,,,·3·2·1=n! olika sätt. n! kallas ”n-fakultet” 1! = 1 2! = 2·1 = 2 etc. Man definierar 0! = 1 Grundlägande statistik,ht 09, AN
F5 Kombinatorik (forts.) Ordnade delmängder En mängd består av N element, av dem väljer vi n. Antalet ordnade delmängder är N·(N-1) ·,,, ·(N-(n-1)) Kan skrivas som T ex N=5. Vi kan då välja n=3 av dem på 5·4·3 = 60 olika sätt. Om vi inte tar hänsyn till ordningen blir antalet sätt Detta kallas kombinationer och skrivs som uttalas ”N över n” Grundlägande statistik,ht 09, AN
F5 Räkneregler för väntevärde och varians Antag att vi vet väntevärde och varians för slumpvariabeln X. Vi definierar en ny slumpvariabeln Y som är en linjär funktion av X. Om Y = a + b·X, så gäller att E(Y) = E(a + b·X) = a + b·E(X) Var(Y) = Var(a + b·X) = b²·Var(X) Ex. X är temp. mätt i grader Celsius. Y är temp. mätt i grader Fahrenheit Då gäller att Y = 9/5·X+32 E(Y)=? Var(Y)=? Grundlägande statistik,ht 09, AN
F5 Väntevärde och varians för summor mm. X och Y är två stokastiska variabler. E(X + Y) = E(X) + E(Y) E(X – Y) = E(X) – E(Y) Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) Var(X – Y) = Var(X) + Var(Y) – 2Cov(X, Y) Specialfall: X och Y okorrelerade. Då är Var(X + Y) = Var(X) + Var(Y) Var(X – Y) = Var(X) + Var(Y) OBS om X och Y oberoende så är de också okorrelerade, dvs Cov = 0. Grundlägande statistik,ht 09, AN
F5 Kontinuerliga stokastiska variabler En kontinuerlig stokastisk variabel kan anta alla värden i ett intervall. Sannolikhetsfördelningen för en kontinuerlig slumpvariabel, X, beskrivs genom en s.k. en funktion f(x), som brukar kallas täthetsfunktion. f(x) ≥ 0 för alla x. Hela ytan under f(x) är lika med 1. P(a ≤X ≤ b) = ytan under f(x) mellan a och b. P(X=a) = 0. (Ytan över en punkt är lika med 0.) Slutna, halvöppna och öppna intervall har samma sannolikhet. Dvs. P(a ≤X ≤ b)= P(a <X ≤ b) = P(a ≤X < b) = P(a < X < b) Grundlägande statistik,ht 09, AN
Grundlägande statistik,ht 09, AN F5 Normalfördelningen Vad vi i praktiken behöver veta om normalfördelningens egenskaper är · fördelningen bestäms helt av μ och σ. · utfallsrummet är hela talaxeln. · fördelningen är symmetrisk kring μ . Svår att härleda men enkel att hantera Många fördelningar kan approximeras med normalfördelningen, t ex binomialfördelningen när n är stort Detta bygger på centrala gränsvärdessatsen. Grundlägande statistik,ht 09, AN