Dagens ämnen Matriser Räkneoperationer och räknelagar

Slides:



Advertisements
Liknande presentationer
Rör vi oss? Det beror på vad vi jämför oss med.
Advertisements

Uppgifter/Läxa Lös uppgifterna: 120, 121, 123, 125, 126, 128, 130, 133, 142, 144, 145.
Hud & hudsjukdomar Fredrik Hieronymus.
Behandlas under 4 kursträffar i mineralmuseet
Administration Distribution Metabolism Exkretion
Kap. 3 Derivator och Integraler
Kapitel 3 Sannolikhet och statistik
Kap. 3 Derivator och Integraler
Sol i Syd Projektdagen 2017 Region Blekinge
SP Sveriges Tekniska Forskningsinstitut
KONJUNKTURINSTITUTET
KPP053, HT2016 MATLAB, Föreläsning 2
Praktiska grejer Lärare: Erik Ramm-Schmidt Läxorna finns på Wilma
Kapitel 1 Algebra och linjära modeller manada.se.
Kursintroduktion Brukarorienterad design
Kapitel 2 Förändringshastigheter och derivator manada.se.
Behandlas under 4 kursträffar i mineralmuseet mars-april 2017
Sällsynta jordartsmetaller
GEOGRAFI.
Så tycker de äldre om äldreomsorgen 2016
Men kolla bildspelet vecka 18 först
Nordiska Lärarorganisationers Samråd
Arbetsgrupp ”Hat och hot mot förtroendevalda”
Är en radikal omställning till hållbar konsumtion möjlig och hur påverkar det våra möjligheter till välbefinnande? Jörgen Larsson Assistant professor in.
X Avrundning och överslagsräkning
Välkommen till.
ULA Kompetenscenter - en del av TPY
VISBY IBKs FÖRENINGSTRÄD
Styrelsen i stallet vecka 20
Framgångsfaktorer för en global projektverksamhet
Gotlands energieffektiviseringsnätverk
Medelhavsbuffé 11/ Bildkavalkad.
Nya regler om energi i BBR
Sannolikhet och statistik
Lagen om Energikartläggning i stora företag
Växtekologisk orienteringskurs
Tularemi.
Information till primärvården Herman Nilsson-Ehle Catharina Lewerin
Inför avtalsrörelsen 2016 Lars Calmfors
Lagen om Energikartläggning i stora företag
KPP053, HT2016 MATLAB, Föreläsning 3
Lars Calmfors Föreläsning 2 för Riksrevisionen 25/2-2016
Fosfor från Östersjöns djupbottnar är problemet
Täthet hos flänsförband mellan stora polyetenrör och ventiler
Arbetsbeskrivning Sportkommittén
Mellankrigstiden
Ledarutveckling över gränserna
Regiongemensam enkät i förskola och familjedaghem 2016
Hur får vi fler att söka till Teknikcollege ?
det är den här processen
Uppföljning av år 2016 HFS-nätverket
BILDSPEL ABISKO, ev. YOUTUBE KLIPP
Visit Karlskoga Degerfors
Vårdprevention - en introduktion för medarbetare på sjukhus
Trygg, säker och samordnad vård- och omsorgsprocess
Föräldraenkät 2017 Förskola
BYGDSAM Anundsjö Grundsunda BLT Nätra.
Nyheter i tredje upplagan av Handbok Riskanalys och Händelseanalys
Så här säljer du med SMS.
Finansiell samordning
Arbetsmarknadsutsikterna hösten 2016
Dagläger MTB i Högbobruk
Sportlovsläger 9-12 feb Årshjulet med läger på skolloven börjar med ett dagläger för våra tävlingsgymnaster Vi hälsar alla gymnasterna i S- och R-ben samt.
Medlemsinfo Tenhults IF
Välkommen till vårt Öppet Hus, SeniorNet Huddinge
Fortum: Lars Modigh Agneta Molinder Synovate Temo: Gun Pettersson
Attraktiv Hemtjänst Introduktion i att utvärdera hemtjänst
Presentation av verksamhetsplan
20% rabatt (På ordinarie priser)
Nu finns det möjlighet att köpa en klubboverall via Team Sportia
Presentationens avskrift:

Dagens ämnen Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers, matrisekvationer Många, fast enkla, begrepp. Läs ”glosorna”, dvs definitionerna!

Matriser En matris är ett rektangulärt schema av tal ordnade i r rader och k kolonner:

Räkneoperationer på matriser

Räkneregler Låt A, B, C vara matriser av samma format. För addition mellan matriser gäller A+B=B+A (A+B)+C=A+(B+C) Det finns en matris av varje typ r⨯k som kallas nollmatrisen och tecknas 0 sådan att för alla r⨯k-matriser gäller A+0=A Till varje r⨯k-matris finns en r⨯k-matris A' sådan att A+A'=0

Räkneregler För multiplikation med reella tal gäller 1·A=A λ(μA)=(λμ)A λ(A+B)=λA+λB för alla matriser A och B av samma format och λ, μ∊R. För multiplikation med reella tal gäller 1· A=A λ(μA)=(λμ)A För multiplikation med reella tal gäller 1· A=A λ(μA)=(λμ)A

???? http://users.mai.liu.se/hanlu09/matrix/

Räkneregler För multiplikation gäller (AB)C=A(BC) (λA)B= A(λB)= λ(AB) A(B+C)=AB+AC (B+C)A=BA+CA för alla λ∊R och alla matriser A, B och C för vilka respektive operationer är definierade. För multiplikation gäller (AB)C=A(BC) För multiplikation gäller (AB)C=A(BC)

???? Rad blir kolonn och kolonn blir rad Transponat ???? Rad blir kolonn och kolonn blir rad

Elementära radoperationer Multiplicera ekvation med nollskild konstant Byta plats på två ekvationer Addera konst*(ekvation) till annan ekvation Multiplicera rad med nollskild konstant Byta plats på två rader Addera konst*(rad) till annan rad Multiplicera ekvation med nollskild konstant Multiplicera ekvation med nollskild konstant

Radekvivalens Om matrisen B erhålls efter ändligt många radoperationer på matrisen A så säges A och B vara radekvivalenta. Att A och B är radekvivalenta skrivs A~B

Sats 3.4.2 Om två ekvationssystem har radekvivalenta totalmatriser så är systemens lösningsmängder identiska.

Sats 3.5.2 Varje r⨯k-matris är radekvivalent med minst en trappstegsmatris. Om T1 och T2 är trappstegsmatriser och T1~T2 så har T1 och T2 lika många nollskilda rader.

Rang (Definition 3.5.3) Låt A vara en matris och T en trappstegsmatris sådan att A~T. Om T har n st nollskilda rader så säges A har rang n och vi skriver rang A = n.

Lösningsstruktur och rang Entydig lösning rang(koeff)=rang(total)=antal variabler Ingen lösning rang(koeff)<rang(total) Oändligt många rang(koeff)=rang(total)<antal variabler

Homogena system (nollor i H.L.) Homogena system är alltid lösbara (alla variabler =0 är alltid en lösning och kallas den triviala lösningen) Homogena system med fler variabler än ekvationer har alltid oändligt många lösningar

Linjära ekvationssystem För ett linjärt ekvationssystem gäller exakt ett av följande alternativ: Systemet har entydig lösning Systemet har ingen lösning Systemet har oändligt många lösningar

Matrisinvers (Definition 3.6.1) En kvadratisk matris A kallas inverterbar om det finns en matris B så att AB=BA=I B kallas A:s invers och betecknas . 𝐴 −1

När finns invers (Sats 3.6.2) Låt A vara en n⨯n-matris. Följande påståenden är ekvivalenta A är inverterbar Matrisekvationen AX=Y har entydig lösning för alla n⨯1-matriser Y. Matrisekvationen AX=0 har endast den triviala lösningen, X=0. Rang A=n A är radekvivalent med enhetsmatrisen

Korollarium 3.6.3 Kan formulera om (b) i sats 3.6.2 som Matrisekvationen AX=Y har entydig lösning för alla n⨯1-matriser Y. Matrisekvationen AX=Y har entydig lösning för alla n⨯k-matriser Y och lösningen är 𝑋= 𝐴 −1 𝑌

Räkneregler (Sats 3.6.6) Låt A och B vara inverterbara n⨯n-matriser. Då gäller för alla heltal n≥1 𝐴 −1 −1 =𝐴 𝐴 𝑡 −1 = 𝐴 −1 𝑡 𝐴𝐵 −1 = 𝐵 −1 𝐴 −1 𝐴 𝑛 −1 = 𝐴 −1 𝑛