Populärt brukar algebra ibland kallas för bokstavsräkning För andra betydelser, se Algebra (olika betydelser). Aritmetiska symboler för de fyra räknesätten. Algebra (från arabiska الجبر,"al-djebr", vilket betyder "återförening" eller "koppling") är en gren inom matematiken som kan definieras som en generalisering och utökning av aritmetiken (gren inom matematiken som handlar om rent räknande). Algebra kan också beskrivas som förhållanden, vilka uppkommer, när ett ändligt antal räkneoperationer utförs på en ändlig mängd av tal. Populärt brukar algebra ibland kallas för bokstavsräkning, men detta är något missvisande. Området kan grovt indelas i Elementär algebra, där de reella talens egenskaper behandlas, symboler används för att beteckna konstanter och variabler, och reglerna som gäller för matematiska uttryck och ekvationer involverande dessa symboler studeras, specielltpolynom. Differentialekvationer och liknande hör däremot hemma inom matematisk analys. Abstrakt algebra, där algebraiska strukturer såsom kroppar, grupper, och ringar definieras och studeras Axiomatiskt. Vektorrummens specifika egenskaper studeras inom den linjära algebran. Universell algebra, där egenskaper gemensamma för alla algebraiska strukturer studeras. Datoralgebra, där algoritmer för symbolisk behandling av matematiska objekt samlas.
2016-03-14
ALGEBRA Algebra (från arabiska الجبر,"al-djebr", vilket betyder "återförening" eller "koppling") är en gren inom matematiken som kan definieras som en generalisering och utökning av aritmetiken (gren inom matematiken som handlar om rent räknande). Algebra kan också beskrivas som förhållanden, vilka uppkommer, när ett ändligt antal räkneoperationer utförs på en ändlig mängd av tal. Populärt brukar algebra ibland kallas för bokstavsräkning, men detta är något missvisande. Området kan grovt indelas i Elementär algebra, där de reella talens egenskaper behandlas, symboler används för att beteckna konstanter och variabler, och reglerna som gäller för matematiska uttryck och ekvationer involverande dessa symboler studeras, speciellt polynom. Differentialekvationer och liknande hör däremot hemma inom matematisk analys. Abstrakt algebra, där algebraiska strukturer såsom kroppar, grupper, och ringar definieras och studeras Axiomatiskt. Vektorrummens specifika egenskaper studeras inom den linjära algebran. Universell algebra, där egenskaper gemensamma för alla algebraiska strukturer studeras. Datoralgebra, där algoritmer för symbolisk behandling av matematiska objekt samlas. Algebra För andra betydelser, se Algebra (olika betydelser). Aritmetiska symboler för de fyra räknesätten. Algebra (från arabiska الجبر,"al-djebr", vilket betyder "återförening" eller "koppling") är en gren inom matematiken som kan definieras som en generalisering och utökning av aritmetiken (gren inom matematiken som handlar om rent räknande). Algebra kan också beskrivas som förhållanden, vilka uppkommer, när ett ändligt antal räkneoperationer utförs på en ändlig mängd av tal. Populärt brukar algebra ibland kallas för bokstavsräkning, men detta är något missvisande. Området kan grovt indelas i Elementär algebra, där de reella talens egenskaper behandlas, symboler används för att beteckna konstanter och variabler, och reglerna som gäller för matematiska uttryck och ekvationer involverande dessa symboler studeras, specielltpolynom. Differentialekvationer och liknande hör däremot hemma inom matematisk analys. Abstrakt algebra, där algebraiska strukturer såsom kroppar, grupper, och ringar definieras och studeras Axiomatiskt. Vektorrummens specifika egenskaper studeras inom den linjära algebran. Universell algebra, där egenskaper gemensamma för alla algebraiska strukturer studeras. Datoralgebra, där algoritmer för symbolisk behandling av matematiska objekt samlas. Källa: http://sv.wikipedia.org/wiki/Algebra
GENOMGÅNG 3.1 Uttryck och ekvationer
Ekvation betyder LIKHET
UTTRYCK konstant koefficient variabel Ett uttryck med en variabel kallas ett bokstavsuttryck eller algebraiskt uttryck.
FÖRENKLING AV UTTRYCK
FÖRENKLING AV UTTRYCK
OBS! Hur skall man göra för att inte blanda ihop dessa?
Test med tal!
Test med tal!
Hur mycket är…
Hur mycket är…
Hur mycket är…
FÖRENKLING AV UTTRYCK a) b) c) d)
ADDITION AV UTTRYCK
SUBTRAKTION AV UTTRYCK
ÄPPLEN OCH PÄRON 5 × a 9b 2a + 3b Priset i kronor för 5 kg äpplen Äpplen kostar a kr/kg och päron kostar b kr/kg. Vad betyder 5 × a 9b 2a + 3b Priset i kronor för 5 kg äpplen Priset i kronor för 9 kg päron Priset i kronor för 2 kg äpplen och 3 kg päron
STÄLLA UPP FORMLER Ställ upp en formel för y då y är summan av a och x y är differensen av a och x y är produkten av a och x y är kvoten av a och x OBS!
UPPGIFT Vad kostar det att framkalla en färgfilm och kopiera 36 bilder, om framkallningskostnaden är 9,50 kr och kopieringskostnaden är 2,05 kr per bild? Framkallningskostnad: 9,50 kr Kopieringskostnad: 36 × 2,05 kr = 73,80 kr Total kostnad: 9,50 kr + 73,80 kr = 83,30 kr Det kostar T kr att framkalla en färgfilm och kopiera n stycken bilder, om framkallningskostnaden är a kr och kopieringskostnaden är b kr per bild? Ställ upp en formel för T. Framkallningskostnad: a kr Kopieringskostnad: n × b kr = nb kr Total kostnad: T = a kr + nb kr = (a +nb) kr
Att lösa ekvationer Multiplicera båda leden med 2x Dividera båda leden med 20 Förkorta med 5
Att lösa ekvationer Kontroll:
LÖSA UT VARIABEL Lös ut t ur följande uttryck: - a - a dividera med s
GENOMGÅNG 3.2 Potensekvationer
Ekvationer
Ekvationer
Ekvationer
Ekvationer
Ekvationer
Ekvationer
Potensekvationer
Ekvationen
Ekvationen
OBS!
OBS! 5^(1/2) = 2,2360679775 5^(1/3) = 1,70997594668 5^(1/4) = 1,49534878122
GENOMGÅNG 3.3 Formler och mönster
Uppgift 3301
Uppgift 3302
Uppgift 3313
Uppgift 3314
Lös ut y Kontroll!
GENOMGÅNG 3.4 Olikheter och problemlösning
Problemlösning Simon tänker på ett tal. Då han fördubblar talet och lägger till 18 blir resultatet 74. Vilket tal tänkte Simon på från början?
Olikheter Sidan 163 i bok Ma1bc
Olikhet
Olikhet
Olikhet OBS! OBS!
Problemlösning Ulla skall blanda en 8-procentig lösning saltlösning, dvs 8% av vikten ska vara salt och resten ska vara vatten. Ulla tar 12 g salt. Hur många gram vatten behövs?
DELA UT! Problemlösning Ulla skall blanda en 8-procentig lösning saltlösning, dvs 8% av vikten ska vara salt och resten ska vara vatten. Ulla tar 12 g salt. Hur många gram vatten behövs? DELA UT!
Problemlösning – lösning 1 OBS! Ulla skall blanda en 8-procentig lösning saltlösning, dvs 8% av vikten ska vara salt och resten ska vara vatten. Ulla tar 12 g salt. Hur många gram vatten behövs? Vi får då följande ekvation: 8% av hela vikten är lika med 12 gram Detta skrivs med matematiska symboler: Svar: Hela vikten är 150 gram. Det innebär att det behövs 138 gram vatten.
Problemlösning – lösning 2 Ulla skall blanda en 8-procentig lösning saltlösning, dvs 8% av vikten ska vara salt och resten ska vara vatten. Ulla tar 12 g salt. Hur många gram vatten behövs? 8% av hela vikten är lika med 12 gram Svar: Hela vikten är 150 gram. Det innebär att det behövs 138 gram vatten.
GENOMGÅNG 3.5 Problemlösning (rep) Undersök och bevisa
Vinkelsumma
Vinkelsumma Hörn Grader ?? ?? ?? ?? ?? ?? ?? 3 180 4 360 5 540 6 720 7 900 8 1080 9 1260 10 1440 ?? ?? ?? ?? ?? ?? ??
Vinkelsumma Hörn Grader n ?? 3 180 4 360 5 540 6 720 7 900 8 1080 9 1260 n ??
Vinkelsumma Hörn Grader n (n-2) × 180 ??
Problemlösning Längst ned på ett affärsförslag från en bilfirma fanns följande finansieringskalkyl. Under den blå rutan står den totala låne- kostnaden, d.v.s. den effektiva kreditkostnaden. Vilket belopp står under den blå rutan?
Problemlösning (595 + (84 × 45) + (84 × 3150)) - (216000) = 52975 Längst ned på ett affärsförslag från en bilfirma fanns följande finansieringskalkyl. Under den blå rutan står den totala låne- kostnaden, d.v.s. den effektiva kreditkostnaden. Vilket belopp står under den blå rutan? 3780 264600 (595 + (84 × 45) + (84 × 3150)) - (216000) = 52975 Kostnad för alla ”Genomsnittlig kostand/bet.tillfälle” Kostnad för alla avier Uppläggningskostnad vid första avisering
Problemlösning Vad är totalkostnaden för denna bil? Längst ned på ett affärsförslag från en bilfirma fanns följande finansieringskalkyl. Under den blå rutan står den totala låne- kostnaden, d.v.s. den effektiva kreditkostnaden. Vilket belopp står under den blå rutan? (595 + (84 × 45) + (84 × 3150)) - (216000) = 52975 Vad är totalkostnaden för denna bil? 216000 + 4000 + 52975 = 272975 Vad stod det på prislappen? 216000 + 4000 = 220000
Problemlösning Hur lång tid löper detta lån? 84 / 12 = 7 Svar: 7 år Längst ned på ett affärsförslag från en bilfirma fanns följande finansieringskalkyl. Under den blå rutan står den totala låne- kostnaden, d.v.s. den effektiva kreditkostnaden. Vilket belopp står under den blå rutan? (595 + (84 × 45) + (84 × 3150)) - (216000) = 52975 Hur lång tid löper detta lån? 84 / 12 = 7 Svar: 7 år
Problemlösning - cykelförrådet En stor förskola har ett förråd, där de har sina cyklar. Förskolan har både 2-hjuliga och 3-hjuliga cyklar. Just nu finns det 11 cyklar i förrådet. Tillsammans har de 27 hjul. Hur många av cyklarna är 2-hjulingar, och hur många är 3-hjulingar?
DELA UT! Problemlösning - cykelförrådet En stor förskola har ett förråd, där de har sina cyklar. Förskolan har både 2-hjuliga och 3-hjuliga cyklar. Just nu finns det 11 cyklar i förrådet. Tillsammans har de 27 hjul. Hur många av cyklarna är 2-hjulingar, och hur många är 3-hjulingar? DELA UT!
Cykelförrådet
Cykelförrådet
Problemlösning - cykelförrådet En stor förskola har ett förråd, där de har sina cyklar. Förskolan har både 2-hjuliga och 3-hjuliga cyklar. Just nu finns det 11 cyklar i förrådet. Tillsammans har de 27 hjul. Hur många av cyklarna är 2-hjulingar, och hur många är 3-hjulingar?
Multiplicera in
Multiplicera in
Faktorisera
Faktorisera
Uppgift 3521
Uppgift 3522
Parentesregler
Uppgift 3530