Ladda ner presentationen
Presentation laddar. Vänta.
1
Ett stickprov kvantitativa data: t-test
Nollhypotes H0: =3600 gram Alternativhypotes H1: 3600 gram Deskriptiv statistik: Möjligheter till inferens: Konfidensintervall Resultat: =3920 ± 281 3639< <4201 (95%) Hypotestest (t-test): Resultat t= 2,51 p=0,029 Pojke Vikt 1 3655 2 3465 3 3900 4 3410 5 3720 6 4300 7 3570 8 4000 9 3625 10 4925 11 4190 12 4280
2
Förutsättningar för t-test och motsvarande konfidensintervall
Kvantitativa data Om stickprovet är litet måste variabeln som studeras vara normalfördelad Om stickprovet är stort fungerar analys trots avvikelse från normalfördelning (ju större stickprov desto större avvikelse kan accepteras).
3
Ett stickprov men förutsättningarna för t-test ej uppfyllda: teckentest är ett alternativ
Nollhypotes: median=3600 Teckentest (Sign test) Om hypotesen stämmer borde hälften av differenserna vara negativa och hälften positiva. Resultat: 9 av 12 positiva. p= 0,15 dvs ej signifikant Vikt Förväntat Differens Tecken 3655 3600 55 + 3465 -135 - 3900 300 3410 -190 3720 120 4300 700 3570 -30 4000 400 3625 25 4925 1325 4190 590 4280 680
4
Förutsättningar för teckentest
Stickprov med lägst ordinaldata Test av median (om symmetri är median=väntevärde (populationsmedel) Inga antagandet om fördelningsform Mycket generellt test, men om det är normalfördelat är styrkan mycket lägre än t-test (ca 60% effektivitet vid normalfördlening).
5
Resultat=65 (13) p=0,041 Alltså signifikans!
Ett stickprov men förutsättningarna för t-test ej uppfyllda: tecken-rang-test är ett annat alternativ Vikt Förväntat Differens Rang Tecken 3655 3600 55 3 + 3465 -135 5 - 3900 300 7 3410 -190 6 3720 120 4 4300 700 11 3570 -30 2 4000 400 8 3625 25 1 4925 1325 12 4190 590 9 4280 680 10 Wilcoxon tecken-rang-test Summera rangerna för värden med positivt tecken (eller negativt). Resultat=65 (13) p=0,041 Alltså signifikans!
6
Förutsättningar för tecken-rang-test
Stickprov med kvantitativa data Fördelningen för differenserna ska vara symmetrisk (behöver dock ej vara normalfördelad) Test av median eller väntevärde (populationsmedelvärde) Ingen större effektivitetsförlust (ca 95% effektivitet givet normalfördelning)
7
Ett stickprov kvantitativa data, sammanfattande råd:
t-test är att föredra. Fungerar om variabeln är normalfördelad eller stickprovet stort. Använd så ofta som möjligt. Ibland kan transformering göra datamaterialet mer lämpligt för t-test Teckentest är ett alternativ som fungerar oavsett fördelning Om fördelningen kan antas vara symmetrisk och stickprovet är under 20 kan tecken-rang-test vara ett bra alternativ
8
Två stickprov - ”parade observationer”
Nollhypotes: d=0 Deskriptiv statistik: Konfidensintervall: Resultat: Parat t-test: Resultat: t=11,9 p<0,001 pre post diff
9
Två stickprov parade observationer- ej normalfördelat
pre post diff rang Två alternativ: Teckentest: Alla differenser positiva p=0,001 Tecken-rang-test Rangsumman för plus=66 P=0,003
10
Parade observationer kvantitativa data, sammanfattande råd:
Parat t-test är att föredra. Fungerar om differenserna är normalfördelade eller stickprovet stort. Använd så ofta som möjligt. Ibland kan transformering göra datamaterialet mer lämpligt för t-test Teckentest är ett alternativ som fungerar oavsett fördelning Om fördelningen av differenserna kan antas vara symmetrisk och stickprovet är under 20 kan tecken-rang-test vara ett bra alternativ
11
Två oberoende stickprov
Lean Obese Konfidensintervall Resultat: 2.23 1.18 (95%) Hypotestest, testfunktion: Resultat t=3.95 p=0,001
12
Förutsättningar för t-test mellan två oberoende stickprov
Kvantitativa data, två oberoende stickprov Om stickproven är små måste variabeln vara normalfördelad i respektive population (ju större stickprov desto större avvikelse kan accepteras) De två studerade populationerna ska vara lika homogena (samma standardavvikelse). Detta antagande är inte viktigt om stickproven är ungefär lika stora. Om villkoret ej är uppfyllt kan Welsh test användas
13
Två oberoende stickprov, men villkoren för t-test ej uppfyllda…
Lean rank Obese rank Rangsummetest Jämför rangsummorna Resultat: 150 vs 103 p=0,001
14
Förutsättningar för rangsummetest
Två oberoende stickprov, lägst ordinaldata Vanligt antagande: Populationerna ska ha samma fördelning (spridning och form), men kan skilja sig i läge Tänkbara nollhypoteser: Populationerna har samma median Populationerna har samma väntevärde
15
Transformer... Vanligast är att logaritmera data.
Transformen kan ge mindre skevhet samt mindre skillnader i varians.
16
Två oberoende stickprov kvantitativa data, sammanfattande råd:
Oberoende t-test är att föredra. Fungerar om variabeln är normalfördelad i respektive population eller stickproven stora. Vidare ska populationerna vara lika homogena (ej väsentligt om stickproven är lika stora). Är populationerna inte lika homogena och stickproven olika stora (men i övrigt lämpliga för t-test) är Welsh test ett alternativ. Ibland kan transformering göra datamaterialet mer lämpligt för t-test Ett icke-parametriskt alternativ är rangsummetest
17
Kategoridata- ett stickprov
Andelen lyckade försök=p Parameter= Om np(1-p)>5 gäller: z=1.96 ger 95% konfidensgrad Under samma villkor, testfunktion:
18
Två stickprov Om np(1-p)>5 i båda stickproven gäller:
Under samma villkor; testfunktion (för att testa hypotesen att proportionerna är lika):
19
Analys av frekvenstabell (korstabell, kontingenstabell)
Chi-två test Ex: Testfunktion:
21
Analys av frekvenstabeller med parade data
Efter kampanj Ekologisk Konventionell Före kampanj 22 4 18 46 Teckentest (eller McNemar)
22
Uppgift Vi vill undersöka om populationen ”bingolotto-tittare utan lott” skiljer sig vad det gäller genomsnittlig IQ Formalisera Vad är nollhypotesen? Vilken information behövs?
23
Stickprovsstorlek (Sample Size)
Baserat på ett test Följande information behövs: Signifikansnivå (vanligen 5%) Styrka ( minst 80%) Variabilitet SD,SEM Skillnad att upptäcka (realistisk och intressant?) Baserat på konfidensintervall Följande information behövs: Konfidensgrad Variabilitet SD,SEM Önskad säkerhetsmarginal Baserat på test eller K.I.? Om inte all information finns? Styrkefunktionens utseende Länk:
Liknande presentationer
© 2024 SlidePlayer.se Inc.
All rights reserved.