Presentation laddar. Vรคnta.

Presentation laddar. Vรคnta.

Mathematics 1 /Matematik 1

Liknande presentationer


En presentation รถver รคmnet: "Mathematics 1 /Matematik 1"โ€” Presentationens avskrift:

1 Mathematics 1 /Matematik 1
Lesson 3 โ€“ Functions and their solutions Lektion3 โ€“ Funktioner och deras lรถsningar

2 Solution, Lรถsning If you have an equation that you can not directly solve it may become solvable by substituting Example: ๐‘ฆ=๐‘Ž ๐‘ฅ 4 +๐‘ ๐‘ฅ 2 +๐‘ can be solved if you substitute ๐‘ง= ๐‘ฅ 2 , the equation becomes quadratic ๐‘ฆ=๐‘Ž ๐‘ง 2 +๐‘๐‘ง+๐‘ Example: ๐‘ฆ=lnโก( ๐‘ฅ 2 +๐‘Ž), substitute ๐‘ง= ๐‘ฅ 2 +๐‘Ž, the equation becomes ๐‘ฆ= ln ๐‘ง and has a solution for ๐‘ง=๐‘’ Om du har en ekvation som du inte kan direkt lรถser kan den bli lรถsbart genom substitution. Exempel: ๐‘ฆ=๐‘Ž ๐‘ฅ 4 +๐‘ ๐‘ฅ 2 +๐‘ kan bli lรถst genom substitution av ๐‘ง= ๐‘ฅ 2 , ekvationen blir kvadratisk ๐‘ฆ=๐‘Ž ๐‘ง 2 +๐‘๐‘ง+๐‘ Exempel: ๐‘ฆ=lnโก( ๐‘ฅ 2 +๐‘Ž), substituerar ๐‘ง= ๐‘ฅ 2 +๐‘Ž, ekvationen ๐‘ฆ= ln ๐‘ง har en lรถsning fรถr ๐‘ง=๐‘’

3 Equations systems (gauss elemination)
Assume equations ๐‘˜ 1 = ๐‘Ž 1 ๐‘ง+ ๐‘ 1 ๐‘ฆ+ ๐‘ 1 ๐‘ฅ and ๐‘˜ 2 = ๐‘Ž 2 ๐‘ง+ ๐‘ 2 ๐‘ฆ+ ๐‘ 2 ๐‘ฅ You can multiply any equation with any constant other than zero without changing it. You like to multiply with a value that is such that a subsequent subtraction of the two equations removes z because its coefficient becomes zero. Example: multiply ๐‘˜ 2 ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ž 1 ๐‘Ž 2 and you get ๐‘˜ 2 ๐‘Ž 1 ๐‘Ž 2 = ๐‘Ž 1 ๐‘ง+ ๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 ๐‘ฆ+ ๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 ๐‘ฅ if the equations are now subtracted you get ( ๐‘˜ 2 โˆ’ ๐‘˜ 1 )= ๐‘˜ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘˜ 2 = (๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘ 1 )๐‘ฆ+ (๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘ 1 )๐‘ฅ You have (gauss) eliminated variable z Antar ekvationer ๐‘˜ 1 = ๐‘Ž 1 ๐‘ง+ ๐‘ 1 ๐‘ฆ+ ๐‘ 1 ๐‘ฅ och ๐‘˜ 2 = ๐‘Ž 2 ๐‘ง+ ๐‘ 2 ๐‘ฆ+ ๐‘ 2 ๐‘ฅdu kan multiplicerar alla ekvationer med en konstant annat รคn noll utan att รคndra ekvationen. Du multiplicerar med en vรคrde sรฅdant att en efterfรถljande subtraktion raderar z fรถr att dess koeffcient blir noll. Exempel: multiplicerar ๐‘˜ 2 ๐‘š๐‘’๐‘‘ ๐‘Ž 1 ๐‘Ž 2 och du fรฅ ๐‘˜ 2 ๐‘Ž 1 ๐‘Ž 2 = ๐‘Ž 1 ๐‘ง+ ๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 ๐‘ฆ+ ๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 ๐‘ฅ om d subtraherar nu ekavtionerna fรฅs ( ๐‘˜ 2 โˆ’ ๐‘˜ 1 )= ๐‘˜ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘˜ 2 = (๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘ 1 )๐‘ฆ+ (๐‘ 2 ๐‘Ž 1 ๐‘Ž 2 โˆ’ ๐‘ 1 )๐‘ฅ Du har nu (gauss) eliminerad variabel z

4 Equation linearization (substition)
Assume you have a nonlinear model and collect data [y,t]. Extracting model parameters can be easier if the model is linearized. Example: ๐‘ฆ=๐ด ๐‘’ ๐ต๐‘ก can be linearized to ๐‘™๐‘› ๐‘ฆ ๐ด =๐ต๐‘ก= ln ๐‘ฆ โˆ’ ln ๐ด . A linear model is then ๐‘˜=๐‘Ž๐‘ฅ+๐‘ with ๐‘˜= ln ๐‘ฆ , a=B, x=t, b=ln(A) This is fasted done in excel or similar Antar att du har en ickelinjรคr model och samlar data [y,t]. Extraktion av modelparameter kan vara lรคttare om modellen lineariseras. Exempel: ๐‘ฆ=๐ด ๐‘’ ๐ต๐‘ก kan blir lineariserad till ๐‘™๐‘› ๐‘ฆ ๐ด =๐ต๐‘ก= ln ๐‘ฆ โˆ’ ln ๐ด . En linjรคr model รคr sedan ๐‘˜=๐‘Ž๐‘ฅ+๐‘ med ๐‘˜= ln ๐‘ฆ , a=B, x=t, b=ln(A) Detta gรถr snabbast i excel eller liknade.


Ladda ner ppt "Mathematics 1 /Matematik 1"

Liknande presentationer


Google-annonser