Ladda ner presentationen
Presentation laddar. Vänta.
1
KEMINS GRUNDER KEMI KEMISKA ÄMNEN NO år 7 Mälarhöjdens skola
2
ÄMNENS EGENSKAPER Utseende Hårdhet Glans Färg Form Struktur Smak Doft Strömledningsförmåga Magnetiskt? KEMINS GRUNDER
3
ÄMNENS EGENSKAPER KEMINS GRUNDER
4
ÄMNENS TRE FASER Ämnens tre faser: –Fast –Flytande –Gas Nästan alla ämnen finns i de tre olika formerna Smältpunkt och kokpunkt är olika för olika ämnen KEMINS GRUNDER
5
FASÖVERGÅNGAR KEMINS GRUNDER SMÄLTNING KONDENSERING FÖRÅNGNING STELNING
6
FYSIKALISK FÖRÄNDRING De flesta ämnen kan förekomma i tre tillstånd → fast, flytande och gas. Fysikalisk förändring –När ett ämne övergår från ett tillstånd till ett annat (t.ex. från fast till flytande form). –Ämnet behåller sina ursprungliga egenskaper när det återgår till ursprungstillståndet. Ex: Om man värmer tenn så att det smälter, och sedan låter det svalna till fast form igen, så återfår tenn sina ursprungliga egenskaper. KEMINS GRUNDER
7
KEMISK FÖRÄNDRING Ex: Om man värmer magnesium, börjar magnesiumet brinna och omvandlas till ett helt nytt ämne. Magnesiumoxid har bildats. I ovanstående exempel har en kemisk reaktion skett, där magnesiumet har reagerat med syret i luften. Magnesium + syre → magnesiumoxid http://www.youtube.com/watch?v=u89wG8qGC1Y&feature=related http://www.youtube.com/watch?v=u89wG8qGC1Y&feature=related KEMINS GRUNDER
8
KEMI GRUNDÄMNEN OCH KEMISKA FÖRENINGAR NO år 7 Mälarhöjdens skola
9
ATOMER ATOMER: Naturens byggstenar Det finns drygt 100 stycken olika att bygga med. Exempel: syre, väte, kol, svavel, järn, kvicksilver, bly, uran… KEMINS GRUNDER
10
MOLEKYLER Atomerna kan kombineras på oändligt många olika sätt i teorin MOLEKYL: Atomer som sitter ihop i en grupp (från 2 atomer till flera tusen) Molekyler kan bestå av likadana atomer (t.ex. två syreatomer), eller av olika slags atomer (t.ex. vatten, där varje vattenmolekyl består av en syreatom och två väteatomer). KEMINS GRUNDER
11
ATOMER OCH MOLEKYLER I din kropp finns det cirka 5 000 atomer KEMINS GRUNDER Människokroppen: Syre drygt 60 % Kol ca 20 % Väte ca 10 % Kväve ca 3 % Kalcium ca 2 % Fosfor ca 1 % Kalium ca 0,4 % Svavel 0,3 % Klor ca 0,2 % Natrium ca 0,1 % Magnesium ca 0,1 % Andra spårämnen ( < 0,01 %): Magnesium, bor, krom, kobolt, koppar, flor, jod, järn, selen, mangan, molybden, kisel, tenn, vanadium, zink
12
ATOMENS UPPBYGGNAD (Nils Bohrs modell) I mitten av atomen finns atomkärnan Atomkärnan består av protoner och neutroner. Runt kärnan, i ett elektronmoln (skal), kretsar elektroner. Protonerna är positivt laddade. Man säger att varje protons laddning är +1. Elektronerna är negativt laddade. Man säger att varje elektrons laddning är -1. Neutronen har ingen laddning. Det finns lika många protoner som elektroner i en atom och atomen blir därmed elektriskt neutral. KEMINS GRUNDER
13
KEMISKA TECKEN GrundämneKemiskt tecken VäteH SyreO JärnFe KolC SvavelS MagnesiumMg KEMINS GRUNDER Jöns Jacob Berzelius (1779-1848) införde kemiska tecken för varje grundämne. Används över hela världen. En eller två bokstäver ur ämnets latinska namn. Första bokstaven stor och andra liten.
14
ATOMNUMMER Atomnumret anger hur många protoner det finns i kärnan. Atomnumret sätts som regel nere till vänster om det kemiska tecknet. Ex: Helium har 2 protoner (och därmed 2 elektroner). Helium har därmed atomnummer 2. Skrivs: 2 He KEMINS GRUNDER
15
PERIODISKA SYSTEMET KEMINS GRUNDER Grupp: Grundämnena i en grupp har ofta gemensamma egenskaper. Period: Alla grundämnen i en period har lika många skal.
16
Helium 2 He Neon 10 Ne Argon 18 Ar Krypton 36 Kr L M K: max 2 e - L: max 8 e - M: max 8 e - om det ligger ytterst Om det finns skal utanför kan man dock få plats med 18 elektroner i M- skalet. K + + ++ + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - -- ATOMENS UPPBYGGNAD KEMINS GRUNDER
17
GRUNDÄMNEN OCH KEMISKA FÖRENINGAR Ofta delar man in ämnen i grundämnen och kemiska föreningar Grundämne –Drygt 100 i naturen –Ett ämne som bara består av en enda sorts atomer (t.ex. syreatomer eller kolatomer) –Delas in i metaller, icke-metaller och halvmetaller Kemisk förening Innehåller fler än en sorts atomer. T.ex. vatten som består av syre- och väteatomer. KEMINS GRUNDER
18
METALLER, ICKE-METALLER OCH HALVMETALLER Man delar upp grundämnena i metaller, icke-metaller och halvmetaller: Metaller –Ca 80 % av alla grundämnen. –De flesta metaller har ett litet antal elektroner i sitt yttersta skal –Leder ström och värme bra –Ofta hög densitet (tunga) –Metallglans –Ex: aluminium, bly, guld, järn, koppar, platina, silver, tenn, zink. Icke-metaller –Ämne som saknar metalliska egenskaper (se ovan) Halvmetaller –Grundämne med egenskaper mellan de rena metallerna och icke-metallerna KEMINS GRUNDER
19
GRUNDÄMNEN OCH KEMISKA FÖRENINGAR KEMINS GRUNDER
20
KEMINS SPRÅK Alla grundämnen har en kemisk beteckning som är gemensam över hela världen. En molekylformel visar hur atomerna sitter ihop i molekylerna. Med hjälp av dessa förkortningar kan kemister skriva reaktionsformler som beskriver: –Hur ämnen är uppbyggda –Vad som händer när ämnen reagerar med varandra KEMINS GRUNDER Väte = H Syre = O Kol = C Kväve = N Järn = Fe Guld = Au Silver = Ag 2 H 2 + O 2 → 2 H 2 O Vätgas = H 2 Syrgas = O 2 Vatten = H 2 O
21
En syremolekyl skrivs O 2 Två syremolekyler skrivs 2O 2 Tre syremolekyler skrivs 3O 2 KEMINS SPRÅK KEMINS GRUNDER Kemiska tecknet för syre är O. När syre förekommer som gas är atomerna bundna till varandra två och två så att de bildar små grupper, molekyler.
22
MOLEKYLER KEMINS GRUNDER Två syreatomer sitter ihop och bildar en syremolekyl. Syre har beteckningen O och en syremolekyl med två syreatomer betecknas med O 2. Två väteatomer och en syreatom sitter ihop och bildar en vattenmolekyl. Syre har beteckningen O, och väte H, så vatten har beteckningen H 2 O. Två syreatomer och en kolatom sitter ihop och bildar en koldioxidmolekyl (ordet ”di” betyder ”två”). Syre har beteckningen O, och kol C, så vatten har beteckningen CO 2.
23
REAKTIONSFORMLER För att enkelt kunna beskriva vad som sker vid kemiska reaktioner så skriver man en reaktionsformel. Så här skriver man: 1.Skriv först de ämnen du har från början. Sätt ett plustecken mellan varje ämne. 2.Rita sedan en pil (som anger själva reaktionen). 3.Till höger om pilen skriver du de ämnen som bildas. 4.Obs! Det ska finnas lika många atomer av varje grundämne på båda sidor om pilen. KEMINS GRUNDER
24
ATT RITA GRUNDÄMNEN KEMINS GRUNDER
25
KEMI RENA ÄMNEN OCH BLANDNINGAR NO år 7 Mälarhöjdens skola
26
RENA ÄMNEN OCH BLANDNINGAR Rent ämne –I ett rent ämne finns bara en sorts molekyler. T.ex, destillerat vatten. –Rena ämnen är mycket sällsynta Blandning –En blandning består av flera olika sorters molekyler. T.ex. kranvatten. –I en blandning är ämnena inte bundna till varandra. De ämnen som ingår har kvar sina kemiska egenskaper. –Ex: Svavel och järn i pulverform blandas. Järn är svart och magnetiskt men svavel är gult och omagnetiskt. När vi blandat dem kan vi skilja dem åt igen med en magnet. KEMINS GRUNDER
27
BLANDNINGAR De flesta ämnen löser sig bättre ju varmare det är. Gaser tvärtom – löser sig sämre vid uppvärmning Lösning De lösta partiklarna (enskilda atomer eller molekyler) håller sig svävande i en vätska Klar och genomskinlig Omättad eller mättad t.ex. te Slamning Små fasta partiklar sjunker till botten eller stiger upp till ytan i en vätska Grumlig t.ex. kakao i vatten Emulsion Blandning av två vätskor som inte kan lösa sig i varandra. Innehåller så små droppar av vätska att de därför kan hålla sig svävande t.ex. fett i mjölk Gaslösning Gas som är löst i något ämne t.ex. luft, syrgas i vatten, kolsyregas i läsk Legering Metaller som smälts samman t.ex. brons (koppar + tenn), rostfritt stål (järn, krom och nickel) KEMINS GRUNDER
28
MÄTTADE OCH OMÄTTADE LÖSNINGAR En lösning är en blandning av ämnen, där ämnena som ingår har delat upp sig i så små bitar, att vi inte kan se dem → en lösning är ofta klar och genomskinlig. De lösta partiklarna håller sig svävande i vätskan. Vätskan i en lösning kallas för lösningsmedel. –Ex: saft (vatten = lösningsmedel) saltvatten (vatten = lösningsmedel) Målarfärg (lacknafta = lösningsmedel) Omättad lösning –Om man löser en liten mängd av ett ämne, t.ex. salt, så får man en utspädd lösning. –Fortsätter man att hälla i mer av ämnet, blir lösningen koncentrerad. –Så länge det går att lösa mer av ett ämne i lösningsmedlet är lösningen omättad. Mättad lösning –En lösning där lösningsmedlet inte längre kan lösa mer av det tillsatta ämnet. –Ju högre temperatur lösningen har, desto mer av ämnet klarar den av att lösa. –Om man lägger i sockerbitar i ett glas med vatten, så löses sockret upp och blandar sig till med vattnet till en lösning som ser ut som vanligt vatten, men smakar sött. Om man fortsätter att lägga i sockerbitar, klarar lösningen inte längre av att lösa upp sockret, som då lägger sig på botten → vi har fått en mättad lösning. KEMINS GRUNDER
29
SLAMNING OCH EMULSION SLAMNING –Partiklar löser sig inte, utan de faller till botten eller stiger upp på ytan. –Grumlig. –Ex: kakao som man häller i vatten och rör runt. Efter att man låtit blandningen stå en stund faller partiklar ned på botten. –Slamning och emulsion är blandningar där de fasta partiklarna inte löser sig i vätskan, utan faller till botten eller stiger till ytan. –En slamning är grumlig (t.ex. kakao i vatten). EMULSION –Liknar slamning. En blandning av två vätskor, som inte kan lösa sig i varandra. Mycket små droppar av en vätska svävar omkring i en annan vätska. –Ofta lägger sig vätskorna som skikt på varandra. (t.ex. matolja och vatten). –Om man lyckas finfördela ämnet till oerhört små droppar, kan de hålla sig svävande i lösningsmedlet utan att flyta upp. (t.ex. mjölk som innehåller små ”fettkulor” blandade i vatten. KEMINS GRUNDER
30
GASLÖSNINGAR Blandning av gaser lösta i varandra. T.ex. luft → kväve 78%, syre 21%, koldioxid, vattenånga och ädelgaser Gaser löser sig lättare i vatten vid högt tryck och låg temperatur. –Ex: Kolsyrade läskedrycker – gasen koldioxid tillsätts under högt tryck. När man öppnar flaskan sjunker trycket → gasen går ur lösningen och det bildas bubblor som stiger till ytan. –När man värmer vatten bildas luftbubblor innan det kokar. Det är luft som varit löst i vatten och som avgår när temperaturen stiger (varmt vatten kan inte lösa lika mycket luft som kallt vatten). KEMINS GRUNDER
31
LEGERINGAR Ämnen som framställs genom sammansmältning av grundämnen där minst en är en metall. Har ofta andra egenskaper än de metaller som ingår. Är ofta starkare, och mer motståndskraftiga och har en lägre smältpunkt. KEMINS GRUNDER LegeringIngående metaller BronsKoppar + tenn LödtennBly + tenn MässingKoppar + zink NysilverKoppar + zink + nickel Rostfritt stålJärn + krom + nickel
32
LÖSNINGSMEDEL VATTEN –Det vanligaste lösningsmedlet. –Exempel: –Lösningsmedel för växter och levande varelser för näringsupptagning och - transport. –Spolarvätska → alkohol + vatten –K-sprit + vatten i bensintank → förhindrar att vattnet fryser i bensintanken på vintern. –En del målarfärger (vattenlösliga) ANDRA LÖSNINGSMEDEL –T.ex. lacknafta, aceton, terpentin för en del målarfärger KEMINS GRUNDER
33
KEMI SEPARERA ÄMNEN NO år 7 Mälarhöjdens skola
34
SEPARERA ÄMNEN Vanligaste metoderna är sedimentering, filtrering, destillering och indunstning. SEDIMENTERING –För partiklar uppslammade i en vätska. –Man avskiljer fasta partiklar genom att de antingen sjunker till botten eller flyter upp till ytan. –Därefter för man över t.ex. det renade vattnet till en annan plats → dekantering. –Ex: Reningsverk – sedimenteringsbassänger för att få bort föroreningar. FILTRERING –För partiklar uppslammade i en vätska. –Vätskan hälls genom ett filter som innehåller små hål (porer), där vätskan (filtrat) kan passera men de fasta partiklarna stannar kvar. –Ex: Kaffesump separeras från kaffet i ett filter. Rening av dricksvatten sker genom ett sandfilter (tjockt lager sand på botten av en bassäng). KEMINS GRUNDER
35
SEPARERA ÄMNEN DESTILLERING –För ämnen lösta i en vätska. –Utnyttjar att ämnena har olika kokpunkter. –Vätskan värms upp i en behållare och ångan som bildas förs till ett rör där den kyls ner och övergår till vätska igen. Övriga ämnen stannar kvar i behållaren. Om vatten är lösningsmedlet får vi destillerat vatten. INDUNSTNING –Man låter lösningsmedlet (ofta vattnet) avdunsta, och man får då kvar övriga ämnen. –Ex: Separera salt från vatten. Man kan stänga in saltvatten i stora, grunda bassänger (saliner) och låta vattnet dunsta bort. KEMINS GRUNDER
Liknande presentationer
© 2024 SlidePlayer.se Inc.
All rights reserved.