Jämförelse av två populationer Sid

Slides:



Advertisements
Liknande presentationer
Punkt- och intervallskattning Felmarginal
Advertisements

Ett stickprov kvantitativa data: t-test
Inferens om en population Sid
Hej hypotestest!. Bakgrund  Signifikansanalys  Signifikansprövning  Signifikanstest  Hypotesprövning  Hypotestest Kärt barn har många namn Inblandade:
FL4 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Klusterurval, forts..
Användande av hjälpinformation: Kvotskattning
Samband mellan kvalitativa variabler Sid
FL8 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
732G22 Grunder i statistisk metodik
FL10 732G81 Linköpings universitet.
FL9 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
FL5 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
732G22 Grunder i statistisk metodik
Inferens om en ändlig population Sid
Kapitel 5 Stickprovsteori Sid
Linda Wänström och Elisabet Nikolic (Karl Wahlin)
732G22 Grunder i statistisk metodik
Ett stickprov kvantitativa data: t-test
F11 Olika urvalsmetoder, speciellt obundet slumpmässigt urval (OSU)
Workshop i statistik för medicinska bibliotekarier!
Vad ingår kursen? i korta drag
Tillämpad statistik Naprapathögskolan
Skattningens medelfel
Experimentell utvärdering Språkteknologisk forskning och utveckling (HT 2006)
Förelasning 6 Hypotesprövning
Föreläsning 81 Sampling och urval Ofta möter vi påståenden av typen “4.5 miljoner svenskar såg VM-finalen i fotboll”, “en svensk tolvåring väger i genomsnitt.
732G81 Statistik Föreläsning 3 732G81 Statistik
732G22 Grunder i statistisk metodik
En mycket vanlig frågeställning gäller om två storheter har ett samband eller inte, många gånger är det helt klart: y x För en mätserie som denna är det.
FL7 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Binomialsannolikheter ritas i ett stolpdiagram
Statistikens grunder 2 dagtid
Egenskaper för punktskattning
Sannolikhet Stickprov Fördelningar
FL6 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Normalfördelningen och centrala gränsvärdessatsen
Övningsexempel till Kapitel 7 Ex 1. BRÄNNBOLLSDILEMMAT ! En person funderar över hur man bäst uppskattar 28 meter. Av erfarenhet vet han att hans steglängd,
F8 Hypotesprövning. Begrepp
F8 Hypotesprövning. Begrepp
Forskningsmetodik Sampling och urval Hypotesprövning Lektion 9
Statistik Lars Valter Fil.lic. Statistik
Matematisk statistik och signal-behandling - ESS011 Föreläsning 1 Igor Rychlik 2015 (baserat på föreläsningar av Jesper Rydén)
732G22 Grunder i statistisk metodik
1 Fler uträkningar med normalfördelningstabell Låt X vara Nf(170,5). Beräkna Lösning:
Grundläggande statistik, ht 09, AN
Statistiska samband i trafikolyckor Av: Lina Forsberg Hangjin Lee Daniel Leo Carl-Mikael Westman.
Grundläggande statistik, ht 09, AN1 F6 Slumpmässigt urval 1. Population där X är diskret med fördelningen p(x). Medelvärdet μ och variansen σ². Observationer:
Lite repetition och SAMBAND & INFERENS. population Population Stickprov, urval INFERENS = Dra slutsatser från data om hela populationen utifrån ett stickprov.
Föreläsning 8 732G81. Kapitel 8 Inferens om en ändlig population Sid
1 Normalfördelningsmodellen. 2 En modell är en förenklad beskrivning av någon del av verkligheten. Beskrivningen måste vara relevant för det vi skall.
SAMBAND. Vi vill undersöka om det finns ett samband mellan tentamensresultat och genomsnittligt antal timmar/dag man studerat. Person ABCDEFGHIJ Timmar/
Lite repetition och SAMBAND & INFERENS. population Population Stickprov, urval INFERENS = Dra slutsatser från data om hela populationen utifrån ett stickprov.
Medicinsk statistik II Läkarprogrammet T5 HT 2013 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus.
Föreläsning 6 732G81. Kapitel 6 Inferens om en population Sid
Vetenskaplig metod Statistik 1. VAD ÄR STATISTIK? 2. DESKRIPTION 3. URVAL 4. STATISTISK INFERENS OCH HYPOTESPRÖVNING a) t-test b) ickeparametriska test.
Deskription Normalfördelningsmodellen 1. 2 En modell är en förenklad beskrivning av någon del av verkligheten. Beskrivningen måste vara relevant för det.
Statistisk hypotesprövning. Test av hypoteser Ofta när man gör undersökningar så vill man ha svar på olika frågor (s.k. hypoteser). T.ex. Stämmer en spelares.
Föreläsning 4 732G81. Kapitel 4 Sannolikhetsfördelningar Sid
Statistisk inferensteori. Inledning Den statistiska inferensteorin handlar i huvudsak om att dra slutsatser från ett slumpmässigt urval (sannolikhetsurval)
Samband & Inferens Konfidensintervall Statistisk hypotesprövning –Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband.
Hypotesprövning. Statistisk hypotesprövning och hypotetisk-deduktiv metod Hypotetisk-deduktiv metod: –Hypotes: Alla svanar är vita. –Empirisk konsekvens:
1 Multipel Regression Kapitel Modell Vi har p oberoende variabler som vi tänker oss kan vara relaterade till den beroende variabeln. Y ~ N( , 
Samband & Inferens Konfidensintervall Statistisk hypotesprövning –Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband.
Samband & Inferens Konfidensintervall Statistisk hypotesprövning
INFERENS & SAMBAND. population Population Stickprov, urval INFERENS = Dra slutsatser om hela populationen utifrån ett stickprov Data, observationer.
INFERENS & SAMBAND. population Population Stickprov, urval INFERENS = Dra slutsatser från data om hela populationen utifrån ett stickprov Data, observationer.
Samband & Inferens Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband mellan kvot-varibaler –Korrelationskoefficient.
Enkel Linjär Regression. 1 Introduktion Vi undersöker relationer mellan variabler via en matematisk ekvation. Motivet för att använda denna teknik är:
INFERENS OCH SAMBAND. Vi vill undersöka om det finns ett samband mellan tentamensresultat och genomsnittligt antal timmar/dag man studerat. Person ABCDEFGHIJ.
Presentationens avskrift:

Jämförelse av två populationer Sid 186-209 Kapitel 7 Jämförelse av två populationer Sid 186-209

Konfidensintervall för jämförelse av populationsmedelvärden Krav Två oberoende OSU Samplingfördelningarna för de två stickprovsmedelvärdena går att betrakta som normalfördelade Känd  Okänd 

Exempel För att planera för personalåtgång i en sportaffär dras ett OSU av 25 måndagar och ett OSU av 25 lördagar från en population (baserad på data från många år). Medelförsäljningen var 10780 kr på måndagar med standardavvikelse 6330 kr och 9082 kr på lördagar med standardavvikelse 4698 kr. Är försäljningen lägre på lördagar än på måndagar? Beräkna ett lämpligt 95%-igt konfidensintervall för att besvara frågeställningen. Vilka antaganden behöver göras?

Hypotesprövning för jämförelse av populationsmedelvärden Krav Två oberoende OSU Samplingfördelningarna för de två stickprovsmedelvärdena går att betrakta som normalfördelade Nollhypotes H0: µ1 - µ2 = d0 Testvariabler Om  är känd Om  är okänd Kritiska värden För Ha: µ1 - µ2 ≠ d0 är kritiskt område både till vänster om zα/2 resp. tn*-1; α/2 och till höger om z1-α/2 resp. tn*-1; 1-α/2 För Ha: µ1 - µ2 < d0 är kritiskt område till vänster om z α resp. tn*-1; α För Ha: µ1 - µ2 > d0 är kritiskt område till höger om z 1-α resp tn*-1; 1-α

Exempel forts. Hypotestesta på 5% signifikansnivå om den genomsnittliga försäljningen är lägre på lördagar än på måndagar. Vilka antaganden behöver göras?

Konfidensintervall för jämförelse av populationsandelar Krav Två oberoende OSU np(1-p) > 5 för båda stickproven Dubbelsidigt och enkelsidiga konfidensintervall med konfidensgrad 1 - a:

Exempel I SIFOs väljarbarometer från i mars 2014 svarade 50.5% av 1934 tillfrågade att dom skulle rösta på någon av de rödgröna partierna om det var val i dag. Motsvarande siffror i februari var 52.8% av 1933. Beräkna ett 95%-igt dubbelsidigt konfidensintervall för förändringen i andel mellan februari och mars. Vilka antagande behöver göras? Ligger förändringen inom den statistiska felmarginalen?

Hypotesprövning för jämförelse av populationsandelar Krav Två oberoende OSU np(1 – p) > 5 för båda stickproven Nollhypotes H0: p1 - p2 = d0 Testvariabel där Kritiska värden För Ha: µ1 - µ2 ≠ d0 är kritiskt område både till vänster om zα/2 och till höger om z1-α/2 För Ha: µ1 - µ2 < d0 är kritiskt område till vänster om z α För Ha: µ1 - µ2 > d0 är kritiskt område till höger om z 1-α

Exempel forts. Testa, på 5% signifikansnivå, om andelen som skulle rösta på någon av de rödgröna partierna har förändrats mellan februari och mars.

Parvisa observationer Två beroende stickprov Samma enhet studeras vid två tillfällen (”före”, ”efter”) Enheter i de två stickproven är ”parade” (tex man och hustru) Metoderna vi hittills använt har antagit oberoende stickprov och kan inte användas Skapa en ny variabel, D, som är differensen mellan värdena i de två stickproven, per enhet/parade enheter Samma metoder som för ”inferens om en population” kan nu användas!

Exempel Forskare ville undersöka varför vi minns innehåll från en viss typ av reklam bättre än en annan typ av reklam. 10 slumpmässigt utvalda personer fick se en reklamsnutt som klassificerats som ”lätt att minnas” och en reklamsnutt som klassificerats som ”svår att minnas”. Forskarnas hypotes var att hjärnaktiviteten är högre under reklam vi minns och att det är därför vi lättare minns den. Testa, på 5% signifikansnivå, om hjärnaktiviteten är högre under ”lätt att minnas”-reklam. Vilka antaganden behöver göras? Person ”Lätt” ”Svår” 1 141 55 2 139 116 3 87 83 4 129 88 5 51 36 6 50 68 7 118 91 8 161 115 9 61 90 10 148 113