Regressions- och tidsserieanalys Statistik B, 8 hp Regressions- och tidsserieanalys Projekt 1: Index och efterfrågeanalys Projekt 2: Tidserieanalys Projekten ger 2.5 hp Tenta: 5,5 hp Lärare: Lotta Hallberg, ann-charlotte.hallberg@liu.se Isak Hietala
Enkel linjär regression: hyran kan förklaras av lägenhetsstorlek
Kvadratisk regression
Efterfrågeanalys: Efterfrågan förklaras av priset Efterfrågeanalys: Efterfrågan förklaras av priset. Priselasticiteten kan skattas.
Tidserieanalys: en variabel som observeras över flera år kan förklaras av tiden, månaden, ...
Hur mycket betalar man (i genomsnitt) i hyra om man har en lägenhet på 50 kvadratmeter? ca 3747.6 SEK
För varje ytterligare kvadratmeter i lägenhetsyta får man betala ca 60 kronor i månaden mer. 10 kvadratmeter mer = 605 SEK
Residualerna Kv-meter Hyra b0+b1*xi yi-(b0+b1xi) 61 4490 720.92+60.53*61= 4413.25 76.75 50 3211 3747.42 -536.42 32 3265 2657.88 607.12 74 4750 5200.14 -450.14 61 4063 4413.25 -350.25 70 5471 4958.02 512.98 52 4120 3868.48 251.52 64 5432 4594.84 837.16 65 5020 4655.37 364.63 38 3512 3021.06 490.94 37 2456 2960.53 -504.53 37 2560 2960.53 -400.53 50 3179 3747.42 -568.42 117 7110 7802.93 -692.42 86 7019 5926.5 1092.5 50 3199 3747.42 -548.42 73 4953 5139.61 -186.61 77 5623 5381.73 241.27 52 3919 3868.48 50.52 56 3898 4110.6 -212.6 92 6219 6289.68 -70.68 Residualerna
Detta görs genom ‘Minsta-kvadrat-metoden’: Summan av alla kvadrerade avstånd ska bli så liten som möjligt.
Σ 1294 93469 6271637 88196 Kv-meter Hyra xi*yi xi*xi 61 4490 61*4490= 273890 3721 50 3211 160550 2500 32 3265 104480 1024 74 4750 351500 5476 61 4063 247843 3721 70 5471 382870 4900 52 4120 214240 2704 64 5432 347648 4096 65 5020 326300 4225 38 3512 133456 1444 37 2456 90872 1369 37 2560 94720 1369 50 3179 158950 2500 117 7110 831870 13689 86 7019 603634 7396 50 3199 159950 2500 73 4953 361569 5329 77 5623 432971 5929 52 3919 203788 2704 56 3898 218288 3136 92 6219 572148 8464 Σ 1294 93469 6271637 88196 3721 2500 1024 5476 4900 2704 4096 4225 1444 1369 13689 7396 5329 5929 3136 8464
Regression Analysis: Hyra versus Kv-meter The regression equation is Hyra = 721 + 60.5 Kv-meter Predictor Coef SE Coef T P Constant 720.9 370.2 1.95 0.066 Kv-meter 60.533 5.713 10.60 0.000 S = 525.5 R-Sq = 85.5% R-Sq(adj) = 84.8% Analysis of Variance Source DF SS MS F P Regression 1 31002923 31002923 112.26 0.000 Residual Error 19 5247087 276162 Total 20 36250010 Regressionslinjen t-tester och deras p-värden Parameterskattningar och deras standardavvikelser Residualspridningen Konfidensintervall för parametrarna b0 och b1 måste man dock beräkna själv.
Även punktskattningar och punktprognoser kan beräknas med hjälp av MINITAB The regression equation is Hyra = 721 + 60.5 Kv-meter Predictor Coef SE Coef T P Constant 720.9 370.2 1.95 0.066 Kv-meter 60.533 5.713 10.60 0.000 S = 525.5 R-Sq = 85.5% R-Sq(adj) = 84.8% .... Predicted Values for New Observations New Obs Fit SE Fit 95.0% CI 95.0% PI 1 4353 115 ( 4112, 4594) ( 3227, 5479) Values of Predictors for New Observations New Obs Kv-meter 1 60.0