© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.

Slides:



Advertisements
Liknande presentationer
Det svenska perspektivet i kölvattnet av SKF-målet Konferens i Nynäshamn 30 mars – 1 april 2011 Jesper Öberg.
Advertisements

Energiformer och energiomvandlingar. Energiformer • Elektrisk energi – lätt att transportera och omvandla, svår att lagra • Kemisk energi – finns lagrad.
Fritt fall Sid
Fråga 71 Hål är minoritetsbärare i ett n-typ kisel lager. Hålen injeceras från en sida och diffunderar in i n-typ lagret och en koncentrationsprofil upprättshåls.
Eddie Arnold - Make The World Go Away Images colorées de par le monde Déroulement automatique ou manuel à votre choix 1 för dig.
Karolinska Institutet, studentundersökning Studentundersökning på Karolinska Institutet HT 2013.
Bastugatan 2. Box S Stockholm. Blad 1 Läsarundersökning Maskinentreprenören 2007.
Enkätresultat för Grundskolan Elever 2014 Skola:Hällby skola.
Problemlösning, andragradare och kubikrötter Sid 75-85
1 Vänsterskolan Debattartiklar. 2 Aktuell krok 3 Aktuella krokar 1. Direkt krok.
Hittarps IK Kartläggningspresentation år 3.
Från Gotland på kvällen (tågtider enligt 2007) 18:28 19:03 19:41 19:32 20:32 20:53 21:19 18:30 20:32 19:06 19:54 19:58 20:22 19:01 21:40 20:44 23:37 20:11.
TÄNK PÅ ETT HELTAL MELLAN 1-50
Kouzlo starých časů… Letadla Pár foteček pro vzpomínku na dávné doby, tak hezké snění… M.K. 1 I Norrköping får man inte.
Best pictures on the internet 2007 Awards 1http:// Är vänsteralliansen trovärdig i Norrköping.
Diskreta, deterministiska system Projekt 1.2; Vildkatt
För att uppdatera sidfotstexten, gå till menyfliken: Infoga | Sidhuvud och sidfot Fondbolagsträff 2015.
Best pictures on the internet 2007 Awards 1http:// (s), (v), och (mp) i Norrköping, gillar inte att vi använder grundlagarna.
Styrteknik: Grundläggande logiska funktioner D2:1
Exempelbaserade specifikationer med SpecFlow
Arbetspensionssystemet i bilder Bildserie med centrala uppgifter om arbetspensionssystemet och dess funktion
ATLAS-experimentet i skolan Stockholms universitet
”National Champions” Nordiska konkurrensnätverket Bergen 2008 Hans Henrik Lidgard.
Lecture Outlines Chapter 13 Physics, 3rd Edition James S. Walker
Lecture Outlines Chapter 10 Physics, 3rd Edition James S. Walker
Lecture Outlines Chapter 11 Physics, 3rd Edition James S. Walker
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
 Who frågar efter en persons (eller personers) identitet (vem dem är).  Who is he?  Who are they?  Who is coming?
To practise speaking English for 3-4 minutes Genom undervisningen i ämnet engelska ska eleverna ges förutsättningar att utveckla sin förmåga att: formulera.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© Gunnar Wettergren1 IV1021 Project models Gunnar Wettergren
1-1 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1-1 Programmering 7.5 hp Programmering är... creativ, fascinerande, roligt,
Arbete, energi och effekt
Farofyllda vägar Annika Winsth Economic Research September 2015.
CHI-TSONG CHEN KAPITEL 2- Systems Kortfattade läsanvisningar Läs hela kapitlet utom 2.9 och 2.10.
Oroligt och riskfyllt 1. Hygglig tillväxt trots allt 2.
1 Jan-Åke Jönsson, April Jan-Åke Jönsson.
STEPS TO FOLLOW FOR BECOMING A SHIP CAPTAIN A career as a ship captain can be a tedious task. Ship captains take care of business, navigation and operation.
SAFETY EQUIPMENT USED IN MARITIMEOPERATIONS One of the most important sections in maritime courses consists of boat and ship operations. Safety is an important.
Why you should consider hiring a real estate attorney!
Law abiding grounds of filing a divorce Jagianilaw.com.
Types of Business Consulting Services Cornerstoneorg.com.
Annika Winsth April 2017.
Mathematics 1 /Matematik 1
Bringapillow.com. Online Dating- A great way to find your love! The words ‘Love’ and ‘Relationship’ are close to every heart. Indeed, they are beautiful!
Work of a Family law attorney Jagianilaw.com. A Family Law Attorney basically covers a wide range spectrum of issues that a family may face with difficulty.
Course info.
Meeting singles had never been so easy before. The growing dating sites for singles have given a totally new approach to getting into relationships. ‘Singles.
Hoppas det här går hem ! Bildspelet vecka 3 5 BE ® BrucElvis
My role model.
How to Buy Engagement Rings for Women Online?. Buying engagement rings for women or tiffany celebration rings from the online market could be a bit challenging.
You Must Take Marriage Advice to Stop Divorce! Dontgetdivorced.com.
Practice and challenges in involving fathers
Publish your presentations online we present SLIDEPLAYER.SI.
Publish your presentations online we present SLIDEPLAYER.RS.
Publish your presentations online we present SLIDEPLAYER.IN.
Publish your presentations online we present SLIDEPLAYER.VN.
Publish your presentations online we present SLIDEPLAYER.RO.
Publish your presentations online we present SLIDEPLAYER.EE.
Publish your presentations online we present SLIDEPLAYER.CO.IL.
Publish your presentations online we present SLIDEPLAYER.AE.
Publish your presentations online we present SLIDEPLAYER.BG.
Publish your presentations online we present SLIDEPLAYER.AFRICA.
Publish your presentations online we present SLIDEPLAYER.MX.
Publish your presentations online we present SLIDEPLAYER.LT.
Publish your presentations online we present SLIDEPLAYER.LV.
Publish your presentations online we present SLIDEPLAYER.SK.
Packaging that makes life easier!
Presentationens avskrift:

© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials. Lecture Outlines Chapter 8 Physics, 3 rd Edition James S. Walker

Chapter 8 Potential Energy and Conservation of Energy

Units of Chapter 8 Conservative and Nonconservative Forces Potential Energy and the Work Done by Conservative Forces Conservation of Mechanical Energy Work Done by Nonconservative Forces Potential Energy Curves and Equipotentials

8-1 Conservative and Nonconservative Forces Conservative force: the work it does is stored in the form of energy that can be released at a later time Example of a conservative force: gravity Example of a nonconservative force: friction Also: the work done by a conservative force moving an object around a closed path is zero; this is not true for a nonconservative force

Figure 8-1 Work against gravity

Figure 8-2 Work against friction (hastigheten är konstant)

8-1 Conservative and Nonconservative Forces Work done by gravity on a closed path is zero: (Systemet sett från sidan)

8-1 Conservative and Nonconservative Forces Work done by friction on a closed path is not zero: (Systemet sett uppifrån = fågelperspektiv)

Figure 8-5 Gravity is a conservative force

8-1 Conservative and Nonconservative Forces The work done by a conservative force is zero on any closed path:

Table 8-1 Conservative and Nonconservative Forces

Example 8-1a (p.208) Different Paths, Different Forces (m= 4,57 kg) W 1 = -mg1,0 + 0 = -mg1,0 ; W 2 = 0 – mg2, mg1,0 = -mg1,0 W 1 = W 2 (oberoende av vägen) (mg1,0 meter = 45 J)

Example 8-1b (p.208) Different Paths, Different Forces (m = 4,57 kg, μ = 0,63) W 1 = - mg0,634,0= -110 J ; W 2 = - mg0,6312,0 = J, dvs W 1 ≠ W 2 (beror av vägen)

8-2 The Work Done by Conservative Forces If we pick up a ball and put it on the shelf, we have done work on the ball. We can get that energy back if the ball falls back off the shelf; in the meantime, we say the energy is stored as potential energy. (8-1)

8-2 The Work Done by Conservative Forces Gravitational potential energy:

Exercise 8-1 Vad är potentiella energin för ett system som består av en person (m=65 kg) på en 3,0- meters svikt? Sätt U = 0 vid vattenytan. U = mgh = 65 kg 9,81 m/s 2 3,0 m = 1,9 kJ

Example 8-2 (p.211) Pikes Peak or Bust (m=82,0 kg)

Exercise 8-2 Pikes Peak or Bust Vad är ändringen i den potentiella energin för systemet som består av en person (m=82,0 kg) när han klättrat de sista 100,0 meterna? a) Sätt U = 0 vid havsytan (y f = 4301 m, y i = 4201 m) ΔU = U f – U i = mgy f - mgy i = 82 kg9,81 m/s 2 (4301m m) = 80,4 kJ b) Sätt U = 0 på bergstoppen ΔU = U f – U i = mgy f - mgy i = 0 – (82 kg9,81 m/s 2 (-100,0 m)) = 80,4 kJ

Example 8-3 Converting Food Energy to Mechanical Energy

Exemple 8-3 Converting Food Energy to Mechanical Energy Vad skulle kunna vara ändringen i den potentiella energin för systemet som består av en person (m=81,0 kg) om han kunde omsätta hela sitt kaloriintag (212 Cal = 212 kcal) i en direkt “höjdvinst”? 212 kcal = 212 kcal 4,186 J/cal = 887 kJ ΔU = U f – U i = mgy f - mgy i = 81,0 kg9,81 m/s 2 Δ y = 887 kJ Δy = 1120 m

8-2 The Work Done by Conservative Forces Springs: (8-4)

Exemple 8-4 Compressing Energy (and the Jump of a Flea) När kraften 120,0 N drar i en fjäder orsakar den en förlängning på 2,25 cm. Vad blir den (lagrade) potentiella energin om fjädern trycks ihop 3,50 cm? k = F/x = 120,0N/(0,0225 m) = 5330 N/m U = kx 2 /2 = 5330 N/m ( - 0,035 m) 2 /2 = 3,26 J

Example 8-4b Compressed Energy and the Jump of a Flea

8-3 Conservation of Mechanical Energy Definition of mechanical energy: (8-6) Using this definition and considering only conservative forces, we find: Or equivalently:

Photo 8-4 Mormon Flat Dam

8-3 Conservation of Mechanical Energy Energy conservation can make kinematics problems much easier to solve:

8-3 Conservation of Mechanical Energy Eftersom vi är i ett konservativt kraftfält så gäller att energin är bevarad, det vill säga E i = E f vilket är detsamma som U i + K i = U f + K f som skrivs (i ett ”standard y/x-system”) mgy i + mv i 2 /2 = mgy f + mv f 2 /2 som lätt kan omformas till v f 2 = v i 2 + 2g(y i –y f )

Example 8-5 (p.216) Graduation Fling (m = 0,120 kg, v y0 = 7,85 m/s) a) Använd rörelseekvationerna för att bestämma v y då y = 1,18 m b) Visa att E(y=0) = E(y=1,18) Friktionskrafter försummas.

8-5 Graduative fling a) v y 2 = v i 2 + 2a y Δy dvs v y 2 = (7,85) (-9,81) (1,18) = (6,20) 2 b) U i + K i = 0 + 0,120 (7,85) 2 /2 = 3,70 (J) U y + K y = 0,120 9,81 1,18 + 0,120 (6,20) 2 /2 = = 1,39 + 2,31 = 3,70 (J)

Figure 8-9 Speed is independent of path (Inga friktionskrafter)

Example 8-6a (p.218) Catching a Home Run (m=0,15 kg, v 0 = 36 m/s, h = 7,2 m inga friktionskrafter) Beräkna K f och v f

Example 8-6 Catching a Home Run a) U i + K i = 0 + 0,15(36) 2 /2 = 97 (J) U f + K f = 0,159,817,2 + K f K f = 97 – 11 = 86 (J) b) mv f 2 /2 = 86 (J) v f = 34 (m/s)

Example 8-6b Catching a Home Run

Conceptual Checkpoint 8–1 Compare the Final Speeds (Först ned?)

Example 8-7a Skateboard Exit Ramp (m = 55 kg, v i = 6,5 m/s, v f = 4,1 m/s, h = ?, no energy losses due to friction)

Example 8-7 Skateboard Exit Ramp E i = E f U i + K i = (6,5) 2 /2 ≈ 1160 J U f + K f = 559,81h + 55(4,1) 2 /2 (J) U f = 1160 – 460 ≈ 700 (J) h = 700/(559,81) = 1,3 (m) {Practical problem p.220 Maximal höjd? Då U f = 1200 J → h = 2,2 m}

Example 8-7b Skateboard Exit Ramp

Conceptual Checkpoint 8–2 What is the Final Speed? (Ingen friktion) a) 1 m/s b) 2 m/s c) 3 m/s

Example 8-8 (p.221) Spring Time (m=1,70 kg, k = 955 N/m, d = 4,60 cm Om friktionen kan försummas, vad hade blocket för begynnelsehastighet?

Example 8-8 Spring Time mv f 2 /2 = kx 2 /2 = 955(0,046) 2 /2 = 1,01 (J) v f = 21,01/1,70 = 1,09 (m/s)

Active Example 8-1 Find the Speed of the Block when x= x 0

Aktive Example 8-1 Find the speed of the block Energin lagrad i fjädern ger både kinetisk och potentiell energi. Då x = x 0 gäller att mv f 2 /2 + mgd = kd 2 /2 = 955 (0,046) 2 /2 mv f 2 /2 = 1,01 – 1,79,810,046 = 0,24 (J) v f = [2 0,24/1,70] 1/2 = 0,535 (m/s)

8-4 Work Done by Nonconservative Forces In the presence of nonconservative forces, the total mechanical energy is not conserved: Solving, (8-9)

Example 8-9a A Leaf Falls in the Forest: Find the Nonconservative Work

Example 8-9 A leaf Falls in the Forest Find the Nonconservative Work Energi finns lagrad som potentiell energi (h = 5,30 m, m = 17, kg) där U i = mgh = 17, ,815,30 = 0,884 J K i =0 U f = 0 K f = mv f 2 /2 = 17, (1,3) 2 /2 = 0,0143 J W nc = ΔE = E f - E i = - 0,870 J

Example 8-9b A Leaf Falls in the Forest: Find the Nonconservative Work

8-4 Work Done by Nonconservative Forces In this example, the nonconservative force is water resistance:

8-4 Work Done by Nonconservative Forces Eftersom hastigheten är noll i de två tillstånden gäller att E i = mgh E f = mg(-d) W nc = ΔE = E f – E i = -mg(h+d) = (J) som då h = 3,00 m ger d = 5120/mg – h = 5,49 – 3,00 = 2,49 (m)

Conceptual Checkpoint 8–3 Judging a Putt Initial speed a) 2v 0 b) 3v 0 c) 4v 0 ? Friktionskraften antas konstant.

Conceptual Checkpoint 8-3 Judging a Putt Energi finns lagrad som kinetisk energi som går åt till arbetet som friktionskraften F utför på sträckan d. W nc = - Fd ΔE = E f - E i = 0 - mv 0 2 /2 W nc = ΔE ger v 0 ~ d så att om d = 4d måste v = 2v 0, rätt svar a)

Example 8-10 Landing with a Thud (m 1 = 2,40 kg, m 2 = 1,80 kg, d= 0,500 m, μ k = 0,450) Vad är hastigheten när blocket slår i golvet?

Example 8-10 Landing with a Thud Energi finns lagrad som potentiell energi som går åt till arbetet som friktionskraften F utför på sträckan d. W nc = - Fd F = μ k N = μ k m 1 g E i = m 1 gh + m 2 gd E f = m 1 gh + (m 1 + m 2 )v f 2 /2 ΔE = E f - E i = (m 1 +m 2 )v f 2 /2 – m 2 gd = W nc = -Fd v f = [2gd(m 2 – μ k m 1 )/(m 1 +m 2 )] 1/2 = 1,30 m/s

Active Example 8-3 Marathon Man: Find the Height of the Hill

Active Example 8-3 Marathon Man Joggaren (m= 80,0 kg) har utfört ett ickekonservativt (positivt) (muskel)arbete W nc1 = 18,0 kJ Luftmotståndet har utfört ett ickekonservativt (neg.) W nc2 = - 4,42 kJ Joggarens fart på backens krön är = 3,50 m/s Bestäm backens höjd h E i = 0 E f = mgh + mv f 2 /2 = mgh J ΔE = E f - E i = W nc = (18,0 – 4,42) kJ h = [(18,0 – 4,42 – 0,49)kJ/(80,0 kg9,81 m/s 2 )= 16,7 m

8-5 Potential Energy Curves and Equipotentials The curve of a hill or a roller coaster is itself essentially a plot of the gravitational potential energy:

8-5 Potential Energy Curves and Equipotentials The potential energy curve for a spring:

Example 8-11 A Potential Problem Partikeln rör sig i ett konservativt kraftfält längs banan enligt figur. Om hastigheten är 2,30 m/s för x = 0, vad är hastigheten i punkten x = 2,00 m?

Example 8-11 A potential problem E i = K i + U i = 1,60 (2,30) 2 /2 + 9,35 J = 13,58 J E f = K f + U f = 1,60 v f 2 /2 + 4,15 J v f = [2(13,58 – 4,15)/(1,6)] 1/2 = 3,43 m/s

8-5 Potential Energy Curves and Equipotentials Contour maps are also a form of potential energy curve:

Summary of Chapter 8 Conservative forces conserve mechanical energy Nonconservative forces convert mechanical energy into other forms Conservative force does zero work on any closed path Work done by a conservative force is independent of path Conservative forces: gravity, spring

Summary of Chapter 8 Work done by nonconservative force on closed path is not zero, and depends on the path Nonconservative forces: friction, air resistance, tension Energy in the form of potential energy can be converted to kinetic or other forms Work done by a conservative force is the negative of the change in the potential energy Gravity: U = mgy Spring: U = ½ kx 2

Summary of Chapter 8 Mechanical energy is the sum of the kinetic and potential energies; it is conserved only in systems with purely conservative forces Nonconservative forces change a system’s mechanical energy Work done by nonconservative forces equals change in a system’s mechanical energy Potential energy curve: U vs. position