Datornätverk A – lektion 5 Forts kapitel 5: Modem. Shannons regel. Kapitel 6: Transmission.

Slides:



Advertisements
Liknande presentationer
1.Numerical differentiation and quadrature Discrete differentiation and integration Ordinary.
Advertisements

Datornätverk A – lektion 3 Kapitel 3: Fysiska signaler. Kapitel 4: Digital transmission.
Datornätverk A – lektion 4 Fortsättning: Kapitel 4: Datatransmission. Kapitel 5: Modulation.
Figure Types of analog-to-analog modulation
Presens och imperfekt av have. Translate! Jag har huvudvärk. Hon har en röd Volvo. De har två barn tillsammans.
För att uppdatera sidfotstexten, gå till menyfliken: Infoga | Sidhuvud och sidfot Fondbolagsträff 2015.
Styrteknik: Grundläggande logiska funktioner D2:1
Exempelbaserade specifikationer med SpecFlow
Datakommunikation Informationsöverföring
Shannon-tillägg1 SHANNON Kanalkapacitet i bit/s Bandbredd i Hz Signaleffekt i Watt Bruseffekt i Watt.
F14_B_be1 Telekommunikation, Kiruna Källkodning F14_B /BE /BE.
Datornätverk A – lektion 4 Fortsättning: Kapitel 4: Datatransmission. Kapitel 5: Modulation.
F1-be-03_PS1 Telekommunikation F1. F1-be-03_PS2 INFORMATION KODNING MODULATION KANALEN tid frekvens.
Välkommen till Analoga system LE1500.
Repetition of some basic concepts. PCM = Pulse Code Modulation = Digital transmission of analogue signals Sampler AD-converter with seerial output
Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Adderare Addition av två tal innebär att samma förfarande upprepas för varje position i talet. För varje.
Multimedie- och kommunikationssystem, lektion 5 Kap 6: Digital transmission. Fysiskt medium. Modulation. Nyquists och Shannons kapacitetsgränser.
Engineering in Spain Visit of Swedish Delegation Narciso García Escuela Politécnica Superior Universidad Autónoma de Madrid Bilaga.
Figure 6.7: Distorsion. Figure 6.4 FDM (Frekvensdelningsmultiplex, frequency division multiplex) Exempel på FDM-teknik: ADSL-modem, kabel-TV-modem, trådlös.
Welcome to Simulation of Telesystems (DTAC29), or Telesystems (ETAC52)
 Who frågar efter en persons (eller personers) identitet (vem dem är).  Who is he?  Who are they?  Who is coming?
To practise speaking English for 3-4 minutes Genom undervisningen i ämnet engelska ska eleverna ges förutsättningar att utveckla sin förmåga att: formulera.
Polygoner och samband mellan dessa
Telekommunikation,Kiruna Digital modulation F7_A
© Gunnar Wettergren1 IV1021 Project models Gunnar Wettergren
 Det här bordet är gult.  Det där huset är vitt.  De här pennorna är mina.  De där flickorna går på Nicolai.
Learning study som aktionsforskningsprocess: Lärares och elevers parallella lärande.
Shannon dekomposition
Datornätverk A – lektion 4 MKS B – lektion 4 Kapitel 5: Modulation.
CHI-TSONG CHEN KAPITEL 2- Systems Kortfattade läsanvisningar Läs hela kapitlet utom 2.9 och 2.10.
Multimedie- och kommunikationssystem, lektion Forts. Kap 2: Signaler och Kvalitetsmått Kap 3-4: Ljud- och videokompression.
THINGS TO CONSIDER WHILE PLANNING A PARTY Planning an event can take an immense amount of time and planning. Even then, the biggest problem that arises.
SAFETY EQUIPMENT USED IN MARITIMEOPERATIONS One of the most important sections in maritime courses consists of boat and ship operations. Safety is an important.
Advice from Bronx Best Real Estate Attorney. Jagiani Law office of New York has been successfully working as divorce attorney & Real estate attorney for.
Digitization and Management Consulting
Why you should consider hiring a real estate attorney!
Law abiding grounds of filing a divorce Jagianilaw.com.
Types of Business Consulting Services Cornerstoneorg.com.
Mathematics 1 /Matematik 1
Bringapillow.com. Online Dating- A great way to find your love! The words ‘Love’ and ‘Relationship’ are close to every heart. Indeed, they are beautiful!
Kapitel 2 forts – Nätverksmodeller Kapitel 1 - Introduktion
Meeting singles had never been so easy before. The growing dating sites for singles have given a totally new approach to getting into relationships. ‘Singles.
Introduction to Information Technologies
Formal Languages, Automata and Models of Computation
My role model.
How to Buy Engagement Rings for Women Online?. Buying engagement rings for women or tiffany celebration rings from the online market could be a bit challenging.
You Must Take Marriage Advice to Stop Divorce! Dontgetdivorced.com.
Practice and challenges in involving fathers
Vad gör jag om jag vill forska med SPORs data?
Datornätverk A – lektion 4 MKS B – lektion 4
Vattenfalls Idrotts- & Fritidsförbund
Figure Types of analog-to-analog modulation
Season 2018.
Accounts + SD = ♥? SD indicators generated from an integrated statistical account New report financed by Eurostat, DG Environment and Statistics Sweden.
Publish your presentations online we present SLIDEPLAYER.SI.
Publish your presentations online we present SLIDEPLAYER.RS.
Publish your presentations online we present SLIDEPLAYER.IN.
Publish your presentations online we present SLIDEPLAYER.VN.
Publish your presentations online we present SLIDEPLAYER.RO.
Publish your presentations online we present SLIDEPLAYER.EE.
Publish your presentations online we present SLIDEPLAYER.CO.IL.
Publish your presentations online we present SLIDEPLAYER.AE.
Publish your presentations online we present SLIDEPLAYER.BG.
Publish your presentations online we present SLIDEPLAYER.AFRICA.
Publish your presentations online we present SLIDEPLAYER.MX.
Publish your presentations online we present SLIDEPLAYER.LT.
Publish your presentations online we present SLIDEPLAYER.LV.
Publish your presentations online we present SLIDEPLAYER.SK.
Presentationens avskrift:

Datornätverk A – lektion 5 Forts kapitel 5: Modem. Shannons regel. Kapitel 6: Transmission

Example 10 A constellation diagram consists of eight equally spaced points on a circle. If the bit rate is 4800 bps, what is the baud rate? Solution The constellation indicates 8-PSK with the points 45 degrees apart. Since 2 3 = 8, 3 bits are transmitted with each signal unit. Therefore, the baud rate is 4800 / 3 = 1600 baud

Example 11 Compute the bit rate for a 1000-baud 16-QAM signal. Solution A 16-QAM signal has 4 bits per signal unit since log 2 16 = 4. Thus, 1000·4 = 4000 bps

Example 12 Compute the baud rate for a 72,000-bps 64-QAM signal. Solution A 64-QAM signal has 6 bits per signal unit since log 2 64 = 6. Thus, / 6 = 12,000 baud

5.2 Telephone Modems Modem Standards

A telephone line has a bandwidth of almost 2400 Hz for data transmission. Note:

Figure 5.18 Telephone line bandwidth

Modem stands for modulator/demodulator. Note:

Figure 5.19 Modulation/demodulation

Figure 5.20 The V.32 constellation and bandwidth

Figure 5.21 The V.32bis constellation and bandwidth

Figure 5.22 Traditional modems

Figure K modems

The total bandwidth required for AM can be determined from the bandwidth of the audio signal: BWt = 2 x BWm. Note:

Example 7 Consider a noiseless channel with a bandwidth of 3000 Hz transmitting a signal with two signal levels. The maximum bit rate can be calculated as Bit Rate = 2  3000  log 2 2 = 6000 bps

Digital modulation För att överföra N bit/symbol krävs M=2 N Vid M symboler överförs N=log 2 M bit/symbol. Baudrate f s = antal symboler per sekund. Enhet: baud eller symboler/sekund. Symbollängd T s = 1/f s. f s = 1/T s Bitrate R = datahastighet. Enhet: bps eller bit/s. R= f s log 2 M

Exempel: Nedan visas åtta symboler som används av ett s.k. 8QAM-modem (QAM=Quadrature Amplitude Modulation). Symbolerna i övre raden representerar bitföljderna 000, 001, 011 resp 010 (från vänster till höger). Undre raden representerar 100, 101, 111 resp 110.

Forts exempel:

Table 5.1 Bit and baud rate comparison ModulationUnitsBits/Symbol Baud rate Bit Rate ASK, FSK, 2-PSK Bit1NN 4-PSK, 4-QAM Dibit2N2N 8-PSK, 8-QAM Tribit3N3N 16-QAMQuadbit4N4N 32-QAMPentabit5N5N 64-QAMHexabit6N6N 128-QAMSeptabit7N7N 256-QAMOctabit8N8N

Figure 5.13 Relationship between baud rate and bandwidth in ASK, PSK, QAM (not FSK) without pulse shaping Vid många modulationsformer t.ex. s.k. ASK, PSK, och QAM är signalens bandbredd = symbolhastigheten. Vid FSK är bandbredden vanligen större. Bandbredden kan minskas genom s.k. pulsformning.

Maximal kanalkapacitet enligt Nyquist

Example 8 Consider the same noiseless channel, transmitting a signal with four signal levels (for each level, we send two bits). The maximum bit rate can be calculated as: Bit Rate = 2 x 3000 x log 2 4 = 12,000 bps Bit Rate = 2 x 3000 x log 2 4 = 12,000 bps

Shannons regel Kanalkapaciteten C är max antal bit per sekund vid bästa möjliga modulationsteknik och felrättande kodning: C = B log 2 (1+S/N), där B är ledningens bandbredd i Hertz (oftast ungefär lika med övre gränsfrekvensen), S är nyttosignalens medeleffekt i Watt och N (noice) är bruseffekten i Watt.

Example 9 Consider an extremely noisy channel in which the value of the signal-to-noise ratio is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity is calculated as C = B log 2 (1 + SNR) = B log 2 (1 + 0) = B log 2 (1) = B  0 = 0

Example 10 We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000 Hz (300 Hz to 3300 Hz). The signal- to-noise ratio is usually For this channel the capacity is calculated as C = B log 2 (1 + SNR) = 3000 log 2 ( ) = 3000 log 2 (3163) C = 3000  = 34,860 bps

Example 11 We have a channel with a 1 MHz bandwidth. The SNR for this channel is 63; what is the appropriate bit rate and signal level? Solution C = B log 2 (1 + SNR) = 10 6 log 2 (1 + 63) = 10 6 log 2 (64) = 6 Mbps Then we use the Nyquist formula to find the number of signal levels. 4 Mbps = 2  1 MHz  log 2 L  L = 4 First, we use the Shannon formula to find our upper limit.

Capacity Limits Maximum bit rate (capacity) depends on: ○The analog bandwidth available (in Hz) ○The quality of the channel The level of the noise is one of the characteristics of the channel. The ratio of the voltage of the signal sent and the noise present in the channel is important for the maximum data rate achieved. Shannon’s theorem determines the theoretical highest data rate of a noisy channel C = B log 2 (1 + S/N) S/N is the signal to noise ratio (often labeled as SNR)

Capacity Limits Maximum bit rate (capacity) depends on: ○The analog bandwidth available (in Hz) ○The quality of the channel The level of the noise is one of the characteristics of the channel. The ratio of the voltage of the signal sent and the noise present in the channel is important for the maximum data rate achieved. Shannon’s theorem determines the theoretical highest data rate of a noisy channel C = B log 2 (1 + S/N) S/N is the signal to noise ratio (often labeled as SNR)

Example: Problem: Given S/N ratio of dB, bandwidth of 8Khz, compute maximum data rate. Answer: S/N = dB = 10 ^ =  1023 C = 8 Khz * log 2 ( ) C = 8 Khz * log 2 (1024 ) C = 8 * 1000 cycles/second * 10 bits/cycle C = 80 Kbps

How to calculate log 2 x Calculators do not have a button for log 2 x calculation To calculate log 2 x use the following formula: log 2 x = log 10 x/log 10 2  log 10 (x)/0.3 Example: log 2 30 = log 30/log 2  1.477/0.3  4.9