2017-04-06 FL5 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,

Slides:



Advertisements
Liknande presentationer
Punkt- och intervallskattning Felmarginal
Advertisements

Inferens om en population Sid
PowerPoint av Bendik S. Søvegjarto Koncept, text och regler av Skage Hansen.
Att dra slutsatser från webbpanelundersökningar Frimis Jan Wretman 1.
Att söka till högskolan
hej och välkomna EKVATIONER Ta reda på det okända talet.
FL4 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Klusterurval, forts..
Användande av hjälpinformation: Kvotskattning
FL8 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
732G22 Grunder i statistisk metodik
FL10 732G81 Linköpings universitet.
FL9 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
732G22 Grunder i statistisk metodik
Inferens om en ändlig population Sid
Jämförelse av två populationer Sid
Kapitel 5 Stickprovsteori Sid
732G22 Grunder i statistisk metodik
FL2 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
732G22 Grunder i statistisk metodik
F11 Olika urvalsmetoder, speciellt obundet slumpmässigt urval (OSU)
Statistikens grunder, 15p dagtid
Workshop i statistik för medicinska bibliotekarier!
Kap 4 - Statistik.
Vad ingår kursen? i korta drag
Tillämpad statistik Naprapathögskolan
Felkalkyl Ofta mäter man inte direkt den storhet som är den intressanta, utan en grundläggande variabel som sedan används för att beräkna det som man är.
Skattningens medelfel
732G81 Statistik för internationella civilekonomer
Förelasning 6 Hypotesprövning
Centrala Gränsvärdessatsen:
FK2002,FK2004 Föreläsning 2.
Föreläsning 81 Sampling och urval Ofta möter vi påståenden av typen “4.5 miljoner svenskar såg VM-finalen i fotboll”, “en svensk tolvåring väger i genomsnitt.
732G22 Grunder i statistisk metodik
Stratifierat urval OSU är tillämpbart för (ram)populationer där ett slumpmässigt valt element är “representativt” för hela populationen Om man på förhand.
FL7 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Binomialsannolikheter ritas i ett stolpdiagram
Egenskaper för punktskattning
Statistik för internationella civilekonomer
Marknadsundersökning Kap 7
Sannolikhet Stickprov Fördelningar
FL6 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik,
Föreläsning 7 Fysikexperiment 5p Poissonfördelningen Poissonfördelningen är en sannolikhetsfördelning för diskreta variabler som är mycket.
Vara kommun Grundskoleundersökning 2014 Föräldrar 2 Levene skola årskurs 5 Antal svar 2014 för aktuell årskurs i skola: 12 Antal svar 2014 för årskurs.
Linjär regression föreläsning 9
Normalfördelningen och centrala gränsvärdessatsen
Övningsexempel till Kapitel 7 Ex 1. BRÄNNBOLLSDILEMMAT ! En person funderar över hur man bäst uppskattar 28 meter. Av erfarenhet vet han att hans steglängd,
F8 Hypotesprövning. Begrepp
F8 Hypotesprövning. Begrepp
Forskningsmetodik Sampling och urval Hypotesprövning Lektion 9
Föreläsning 11732G26 Surveymetosik med uppsats Urvalsvikter vid dragning med återläggning av PSU Vid urval utan återläggning: Använd analogin med Q i här:
732G22 Grunder i statistisk metodik
1 Fler uträkningar med normalfördelningstabell Låt X vara Nf(170,5). Beräkna Lösning:
Grundläggande statistik, ht 09, AN
Grundläggande statistik, ht 09, AN1 F6 Slumpmässigt urval 1. Population där X är diskret med fördelningen p(x). Medelvärdet μ och variansen σ². Observationer:
Lite repetition och SAMBAND & INFERENS. population Population Stickprov, urval INFERENS = Dra slutsatser från data om hela populationen utifrån ett stickprov.
Föreläsning 8 732G81. Kapitel 8 Inferens om en ändlig population Sid
SAMBAND. Vi vill undersöka om det finns ett samband mellan tentamensresultat och genomsnittligt antal timmar/dag man studerat. Person ABCDEFGHIJ Timmar/
Lite repetition och SAMBAND & INFERENS. population Population Stickprov, urval INFERENS = Dra slutsatser från data om hela populationen utifrån ett stickprov.
Statistisk hypotesprövning. Test av hypoteser Ofta när man gör undersökningar så vill man ha svar på olika frågor (s.k. hypoteser). T.ex. Stämmer en spelares.
Föreläsning 4 732G81. Kapitel 4 Sannolikhetsfördelningar Sid
Statistisk inferensteori. Inledning Den statistiska inferensteorin handlar i huvudsak om att dra slutsatser från ett slumpmässigt urval (sannolikhetsurval)
1. Kontinuerliga variabler
Samband & Inferens Konfidensintervall Statistisk hypotesprövning –Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband.
Samband & Inferens Konfidensintervall Statistisk hypotesprövning –Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband.
Samband & Inferens Konfidensintervall Statistisk hypotesprövning
INFERENS & SAMBAND. population Population Stickprov, urval INFERENS = Dra slutsatser om hela populationen utifrån ett stickprov Data, observationer.
Samband & Inferens Hypotetisk –deduktiv metod Samband mellan nominal/ordinal-variabler –Chi2-test Samband mellan kvot-varibaler –Korrelationskoefficient.
Enkel Linjär Regression. 1 Introduktion Vi undersöker relationer mellan variabler via en matematisk ekvation. Motivet för att använda denna teknik är:
STATISTISK METODIK 1. INLEDNING / VAD ÄR STATISTIK? 2. UNDERSÖKNINGSMETODIK 3. DESKRIPTION 4. SAMBAND.
Presentationens avskrift:

2017-04-06 FL5 732G70 Statistik A Detta är en generell mall för att göra PowerPoint presentationer enligt LiUs grafiska profil. Du skriver in din rubrik, namn osv på sid 1. Börja sedan skriva in din text på sid 2. För att skapa nya sidor, tryck Ctrl+M. Sidan 3 anger placering av bilder och grafik. Titta gärna på ”Baspresentation 2008” för exempel. Den sista bilden är en avslutningsbild som visar LiUs logotype och webadress. Om du vill ha fast datum, eller ändra författarnamn, gå in under Visa, Sidhuvud och Sidfot. Linköpings universitet

Normalfördelningsapproximation av binomialfördelningen 2017-04-06 Normalfördelningsapproximation av binomialfördelningen Exempel Baserat på marknadsandelar vet vi att 20% av konsumenterna föredrar vårt företags produkt. Vad är sannolikheten att av 70 slumpmässigt utvalda konsumenter högst 20 väljer vår produkt? Låt X = antalet kunder som föredrar vårt företags produkt De fyra antagandena är uppfyllda (se föreläsning 4) varför det gäller att Eftersom kan vi approximera med normalfördelningen enligt Linköpings universitet

Normalfördelningsapproximation av binomialfördelningen 2017-04-06 Normalfördelningsapproximation av binomialfördelningen Vi söker Linköpings universitet

Population och stickprov Sampling = konsten att dra stickprov Population (även målpopulation) = den (på logisk väg definierade) grupp av enheter (ofta individer) som vi vill undersöka Urvalsram = förteckning över populationen, ofta ett register Stickprov (sample) = de av enheterna i populationen som vi faktiskt undersöker Urvalsenheter = de enheter som blivit utvalda i stickprovet Population Konsten att dra slutsatser om en population baserat på ett stickprov (statistisk slutledning) är en av grundpelarna inom statistiken! Stickprov

Obundet slumpmässigt urval (OSU) 2017-04-06 Obundet slumpmässigt urval (OSU) (engelska Simple Random Sample) Stickprovsdragning på ett sådant sätt att alla enheter i populationen har samma sannolikhet att bli utvalda. Exempel: Vår population är alla studenter i ett klassrum, och vi vill undersöka genomsnittsvikten i klassen. Att väga alla skulle ta lång tid, och man vill därför dra ett stickprov om 20 personer. Det enklaste sättet att göra ett OSU skulle då vara att skriva ned allas namn på lappar, lägga dem i en låda och dra 20 lappar ur lådan. Då har slumpen valt ut 20 personer åt oss och alla har lika stor chans att bli utvalda. Linköpings universitet

2017-04-06 Stratifierat urval (engelska Stratified Random Sample) När vi vill dra slutsatser om en heterogen population (en population som kan delas in i undergrupper med avseende på det som vi vill undersöka). Varje sådan grupp kallas för ett stratum, och vi drar ett OSU ur varje stratum och väger ihop resultaten. Stratifierat urval ger, om populationen är heterogen, lägre standardavvikelse än ett OSU och därmed säkrare slutsatser om populationen. Exempel (forts): Vi delar upp populationen i kvinnor och män, och lägger sedan lapparna med namn i en låda för kvinnor och en för män. Sedan drar vi 10 lappar ur varje låda. Linköpings universitet

Problem vid stickprovsdragning Övertäckning = när det finns enheter i urvalsramen som egentligen inte tillhör målpopulationen Exempel: Vid studie av vikter bland studenter i ett klassrum används klasslistan som urvalsram. Men vissa studenter har hoppat av utbildningen sedan klasslistan trycktes – de tillhör inte längre målpopulationen utan utgör övertäckning. Undertäckning = när det finns enheter i målpopulationen som saknas i urvalsramen Exempel: Vissa studenter har påbörjat sin utbildning sedan klasslistan trycktes. De tillhör därför målpopulationen men har ingen chans att bli utvalda och utgör därför undertäckning.

Problem vid stickprovsdragning 2017-04-06 Problem vid stickprovsdragning Bortfall = när enheter inte vill (eller kan) mätas. Skilj på Partiellt bortfall: när enheten har nåtts, men vi inte fått all information (exempelvis att inte alla frågor på en enkät besvarats) Totalbortfall: när ingen information erhållits alls från enheten Linköpings universitet

Populationsparametrar och skattningsfunktioner 2017-04-06 Populationsparametrar och skattningsfunktioner Tabell över väntvärdesriktiga skattningsfunktioner. Väntevärdesriktig = vi gör inget systematiskt fel när vi använder skattningsfunktionen som en uppskattning av populationsparametern. Populationsparameter (okänd sanning) Skattningsfunktion (uppskattning baserat på stickprov) Medelvärde Varians Proportionstal Linköpings universitet

Är dessa antaganden rimliga? 2017-04-06 Punktskattning = att använda en skattningsfunktion som en uppskattning av motsvarande populationsparameter Dock: skattningsfunktioner är slumpvariabler och antar olika värden för varje stickprov. Hur ska vi hantera den osäkerheten? Vi börjar med att göra tre antaganden: stickprovet är draget som ett OSU populationen som vi drog stickprovet ur är normalfördelad populationsstandardavvikelsen σ är känd Är dessa antaganden rimliga? Linköpings universitet

Konfidensintervall för medelvärde när  är känd 2017-04-06 Konfidensintervall för medelvärde när  är känd Konfidensintervall = ett osäkerhetsintervall utlagt kring som tillåter oss att med en viss säkerhet säga att µ ingår i intervallet Formel för konfidensintervall: Beräkna Hämta värdet på z ur normalfördelningstabell Linköpings universitet

2017-04-06 Exempel Glödlampor som tillverkas i en viss fabrik har en lystid som kan betraktas som normalfördelad med medelvärde 1600 timmar och standardavvikelse 100 timmar. Nu har man bytt en maskin i fabriken, och har dragit ett stickprov om 150 lampor och konstaterat att bland dem var den genomsnittliga lystiden = 1618 timmar, medan standardavvikelsen förefaller oförändrad. Bestäm ett 95% konfidensintervall för lystiderna för lampor tillverkade med den nya maskinen! Linköpings universitet

Hur kan vi påverka bredden på ett konfidensintervall? 2017-04-06 Hur kan vi påverka bredden på ett konfidensintervall? Öka n Välj en annan konfidensnivå: Lägre konfidensnivå ger ett mindre tabellvärde och därmed ett smalare intervall, men samtidigt minskar säkerheten. Exempelvis 90% konfidensnivå innebär att vi bara med 90% säkerhet inkluderar det sanna populationsmedelvärdet (µ) i konfidensintervallet. Linköpings universitet

stickprovet måste vara draget som ett OSU 2017-04-06 Den metod för att bilda konfidensintervall vi diskuterat hittills baseras alltså på de tre kraven stickprovet måste vara draget som ett OSU populationen som vi drog stickprovet ur är normalfördelad populationsstandardavvikelsen σ är känd Är det rimligt att dessa krav uppfylls i praktiken? => Nej, åtminstone inte att σ är känd Linköpings universitet

Konfidensintervall för medelvärde när σ är okänd 2017-04-06 Konfidensintervall för medelvärde när σ är okänd Baserat på antagandena att stickprovet måste vara draget som ett OSU populationen som vi drog stickprovet ur är normalfördelad kan vi skatta σ med och beräkna konfidensintervallet som där t hämtas ur t-fördelningen (tabellsamlingen sidan 8-9) med n – 1 frihetsgrader. Linköpings universitet

2017-04-06 Exempel En viss sorts påsar med kryddor påstås innehålla 4 gram. Vi kontrollmäter fyra slumpmässigt utvalda påsar och erhåller Bestäm ett 95% konfidensintervall för genomsnittsvikten i påsarna! 4.0 3.6 3.9 4.1 Linköpings universitet

Normalfördelning (z) och t-fördelning (t) 2017-04-06 Normalfördelning (z) och t-fördelning (t) t-värdet är större än z för att ta hänsyn till den ökade osäkerheten som följer av att konfidensintervallet baseras på två skattningar (både och s) t-värdet konvergerar (går mot) z när n ökar (titta i t-tabellen!) Linköpings universitet

2017-04-06 Exempel En butiksägare funderar på om det är ekonomiskt försvarbart att fortsätta hålla butiken öppen på söndagar. Hon samlar därför ihop kvitton från alla försäljningar de 10 senaste söndagarna och beräknar medelvärde och standardavvikelse. Totalt samlar hon ihop 980 kvitton, och beräknar och s = 250 Bestäm ett 95% konfidensintervall för den genomsnittliga försäljningen på söndagar! Linköpings universitet