Presentation laddar. Vänta.

Presentation laddar. Vänta.

© Anders Broberg, Lena Kallin Westin, 2007 Datastrukturer och algoritmer Föreläsning 7 och 8.

Liknande presentationer


En presentation över ämnet: "© Anders Broberg, Lena Kallin Westin, 2007 Datastrukturer och algoritmer Föreläsning 7 och 8."— Presentationens avskrift:

1 © Anders Broberg, Lena Kallin Westin, 2007 Datastrukturer och algoritmer Föreläsning 7 och 8

2 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Innehåll  Reflektioner från OU1-rättningen.  Relationer (Läses på egen hand)  Prioritetsköer  Grafer och grafalgoritmer  Kommer att fortsätta in på nästa föreläsning  Kapitel (16), och 17 i kursboken

3 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Prioritetskö  Modell: Patienterna på en akutmottagning, man kommer in i en viss tidsordning men behandlas utifrån en annan ordning.  Organisation: En mängd vars grundmängd är linjärt ordnad av en prioritetsordning.  Avläsningar och borttagningar görs endast på de element som har högst prioritet.  Andra mängdoperationer är inte aktuella

4 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Specifikation av prioritetskö  Gränsytan Pqueue(val, R): Empty()  Pqueue(val, R) Insert(v:val, p:Pqueue(val, R))  Pqueue(val, R) Isempty(p:Pqueue(val, R))  Bool Inspect-first(p:Pqueue(val, R))  val Delete-first (p:Pqueue(val, R))  Pqueue(val, R)  R är relationen för prioritetsordningen.  Ibland slås de två sista metoderna ihop.  Förutsätter statisk prioritet.  Placera in elementet på rätt plats från början.  Dynamisk prioritet kräver en update-metod.  Inte lika effektiva implementationer

5 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Specifikation av prioritetskö  Prioritetskön kan ta element (val) som består av ett värde och en prioritet.  Gränsytan kan varieras på flera sätt  update  högsta/minsta prioritetsvärdet i kön

6 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Stack och kö är specialfall  Om R är den totala relationen, dvs gäller för alla par av värden blir prioritetskön en stack.  Sista elementet som stoppas in hamnar alltid först.  Om R är den tomma relationen, dvs inte gäller för några par av värden, blir det en kö.  Sista elementet som stoppas in hamnar alltid sist.  Om R är en strikt partiell ordning, som ”>”, kommer lika element behandlas som en kö.  Om R är icke-strikt, som ”≥” behandlas lika element som en stack.

7 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Konstruktioner av Prioritetskö  Mängd, Lexikon eller Heap  Men de har vi inte stött på än…  Lista, ej sorterad  Insert O(1), Delete-first O(n)  Lista, sorterad  Insert O(n), Delete-first O(1)

8 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Tillämpningar  Operativsystem som fördelar jobb mellan olika processer  Enkelt sätt att sortera något.  Stoppa in allt i en prioritetskö och plocka ut det igen.  Hjälpmedel vid traversering av graf  Jmfr på kommande föreläsningar att stack och kö används vid traversering av träd.

9 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Graf  Modell:  Vägkarta med enkelriktade gator utritade.  Tillämpningar  Signaturdiagrammen  Elektroniska kretsar  Nätverk (gator, flygrutter, kommunikation)  Neurala nätverk Bild från sidan 337 i Janlert L-E., Wiberg T., Datatyper och algoritmer, Studentlitteratur, 2000

10 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Mängdorienterad specifikation (vanlig inom matematiken)  En graf G = (V, E) består av  V : en mängd av noder (vertices)  E : en mängd av bågar (edges) som binder samman noderna i V. oEn båge e = (u, v) är ett par av noder. ab c de V = {a, b, c, d, e} E = {(a,b), (a,c), a,d), (b,e), (c,d), (c,e), (d,e)}

11 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Navigeringsorienterad specifikation  En graf är en mängd noder. Till varje nod associeras en grannskapsmängd av noder som kallas grannar.  Alla noder tillhör samma typ  Alla ordnade par av en godtycklig nod och en av noderna i dess grannskapsmängd utgör en båge.  Specifikationen bättre för algoritmer  Mer effektiva navigeringsoperationer.

12 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Oriktade grafer  Bågen är en mängd av två noder. Noderna är grannar till varandra.  Gradtalet = Antalet bågar till grannar (eller sig själv) ab c de

13 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Riktade grafer  Bågen är ordnade par av noder.  Gradtalet indelas i  Ingradtalet = antalet bågar som går till noden  Utgradtalet = antalet bågar som startar i noden och går till en annan nod. ab c de

14 Bokens informella specifikation: Empty – konstruerar en tom graf utan noder och bågar Insert-node(v, g) – sätter in noden v i grafen g Insert-edge(e, g) – sätter in en båge e i grafen g. Det förutsätts att noderna finns i grafen Isempty(g) – testar om grafen g är tom, dvs utan noder Has-no-edges(g) – testar om grafen g saknar bågar Choose-node(g) – väljer ut en nod ur grafen g Neighbours(v, g) – mängden av alla grannar till v i grafen g Delete-node(v, g) – tar bort noden v ur grafen g, förutsatt att v inte ingår i någon båge Delete-edge(e, g) – tar bort bågen e ur grafen g

15 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Terminologi  Väg/stig (path): Sekvens av noder v 1, v 2, …, v n så att v i och v i+1 är grannar.  Enkel väg (simple path): Inga noder förekommer två gånger i vägen.  Cykel (cycle): Enkel väg där den sista noden i sekvensen är densamma som den första.  Dvs första/sista noden är den enda som får finnas två gånger.  En oriktad graf utan cykler är ett träd. ab c de

16 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Terminologi  Sammanhängande (connected) graf  Varje nod har en väg till varje annan nod.  Delgraf (subgraf) en delmängd av noderna och kanterna som formar en graf.  Sammanhängande komponenter  En sammanhängande subgraf ab c de ab c de

17 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Connectivity (nåbarhet)  Låt n = antalet noder och m = antalet bågar.  En komplett graf (complete graph) får man när alla noder är grannar till alla andra.  I en komplett oriktad graf är m = n(n-1)/2  För ett träd gäller m = n-1  Om grafen är sammanhängande så är m ≥ n-1 m=5, n =6 ab dc m=6, n =4 ab c de m=3, n =5

18 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Digraph och DAGs  DiGraph = Directed graph dvs riktad graf  kan vara sammanhängande  kan ha sammanhängande komponenter  DAG = Directed Acyclic Graf  dvs, en riktad graf utan cykler ab c de ab c de

19 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Mer grafer…  Viktad graf  En graf där bågarna har vikter  Multigraf  Tillåtet med flera bågar mellan två noder. Dessa bågar har då oftast olika egenskaper som måste lagras.  Ordnad graf har inbördes ordning mellan grannarna till en nod.

20 Konstruktion av grafer  Förbindelsematris  Bågarna representeras av ettor i en matris.  Rad 1 visar vilka bågar man kan nå från a.  Kolumn 3 visar från vilka noder det kommer bågar till c. + Enkel att implementera och passar när man har siffror på noder och bågar. -Matrisen kan bli stor och gles och kräva specialtrick ab c de

21 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Konstruktion av grafer  Graf som fält av lista.  Listan är grannskapslistan.  Man utgår att det finns minst en båge från varje nod (Fält) men inte att går en båge från varje nod till varje annan nod (därför Lista). + Inte lika utrymmeskrävande som en gles matris. Utrymmet = O(n+m) - Fixt antal noder ab c de a b c d e c c c b de e

22 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Grafalgoritmer  Traversering  Bredden-först och djupet-först  Konstruera ett (minsta) uppspännande träd  Finna vägarna från en nod till alla andra noder  Kortaste vägen mellan två noder  Finna maximala flödet  Finna det maximala flödet mellan två noder

23 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Djupet-först-traversering  Besök utgångsnoden och sedan dess grannar djupet-först rekursivt.  Undersöka en labyrint genom att markera de vägar man gått med färg.  Cykler medför risk för oändlig traversering  Håll reda på om noden är besökt eller ej. Om redan besökt görs inget rekursivt anrop.  Endast de noder man kan nå från utgångsnoden kommer att besökas.  Problem med grafer som ej är sammanhängande.

24 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Djupet-först-algoritm: Algoritm depthFirst(Node n, Graph g) input: A node n in a graph g to be traversed visited(n, g) // Marks the node as visited neighbourSet  neighbours(n, g); for each neighbour in neighbourSet do if not isVisited(neighbour) depthFirst(neighbour, g) djupet_först.ppt

25 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Bredden-först-algoritm  Man undersöker först noden, sedan dess grannar, grannarnas grannar osv.  Risk för oändlig körning om man inte använder en markör för att noden besökts.  Endast noder till vilka det finns en väg från utgångsnoden kommer att besökas.  En kö hjälper oss hålla reda på grannarna.

26 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Bredden-först-algoritm: Algoritm breadthFirst(Node n, Graph g) input: A node n in a graph g to be traversed Queue q  empty(); visited(n, g) // Marks the node as visited q  enqueue(n, q); while not isempty(q) do newNode  front(q) q  dequeue(q); neighbourSet  neighbours(newNode, g); for each neighbour in neighbourSet do if not isVisited(neighbour) visited(neighbour, g); q  enqueue(neighbour, q); bredden_först.ppt

27 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Uppspännande träd  Både bredden-först och djupet-först- traverseringarna ger oss uppspännande träd.  Om vi sparat undan informationen...  Måste utöka grafspecifikationen  Är det minimalt?  Den totala längden i trädet ska vara minimalt.  Om varje kant har samma vikt är trädet minimalt uppspännande för bredden-först traversering. oOm man lägger till kravet att varje nod ska ha så kort väg som möjligt till roten.

28 Uppspännande träd ABC EFG IJK ABC EFG IJK Skapat med djupet-först Ej minimalt Skapat med bredden-först Minimalt Antalet färgade kanter = 8 i båda fallen.

29 Uppspännande träd Jämför vägen A till F! ABCEFGIJK Skapat med djupet-först Ej minimalt ABCEFGIJK Skapat med bredden-först Minimalt

30 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Tidskomplexitet  För bredden-först och djupet-först gäller:  n = antalet noder, m = antalet bågar  Varje nod besöks exakt en gång O(n)  För varje nod följer man bågarna ut från noden för att hitta grannarna. Bör ha O(grad(v)), värsta fallet O(n). oAnvänds mängdorienterad spec. får man O(m)  Grannmängden behöver evalueras en gång för varje nod blir komplexiteten O(  grad(v)) =O(m) oVarje båge tillhör två grannskap  Totalt O(n) + O(m)

31 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kortaste-vägen-algoritm vid lika vikt  Graf med lika vikter på alla bågar  Använd en variant av bredden-först traversering för att beräkna kostnaden för den kortaste vägen från en nod till de andra.  Byt från vanlig kö till prioritetskö.  Lägg till metoder för att lagra avståndet från startnod till aktuell nod i noderna.

32 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kortaste-vägen-algoritm vid lika vikt Algoritm breadthFirst(Node n, Graph g) input: A node n in a graph g to be traversed PrioQueue q  empty(); visited(n, g) // Marks the node as visited setDist(n, 0) q  insert (n, q); while not isempty(q) do newNode  inspectFirst (q) q  deleteFirst (q); neighbourSet  neighbours(newNode, g); for each neighbour in neighbourSet do if not isVisited(neighbour) visited(neighbour, g); setDist(neighbour, getDist(newNode)+1) q  insert (neighbour, q);

33 DoA VT -07 © Anders Broberg, Lena Kallin Westin, ABC EFG IJK Om alla bågar har vikt A B C E F G I J K

34 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Uppspännande träd  Hur hanterar man grafer med vikter?  Uppspännande träd med minsta totala längd. oDet är alltså inte en kortaste-vägen algoritm!  För navigeringsorienterad specifikation oPrims algoritm  För mängdorienterad specifikation o Kruskals algoritm A R B F C D E G

35 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Prims algoritm  Går ut på att bygga upp ett allt större träd som till slut spänner upp grafen eller en sammanhängande komponent av den.  I varje steg väljs en båge med minimal vikt.  Lika vikter måste behandlas konsekvent.  Regeln styr hur det färdiga trädet ser ut.

36 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Välj en nod vilken som helst och markera den som öppen. Låt den bli rot. 2.Markera den som stängd. 3.För var och en av (de icke-stängda) grannarna: 1.Markera den som öppen (om den inte är det). 2.Stoppa in den aktuella noden, grannen och vikten i en prioritetskö. Är vikterna lika ska det nya elementet läggas in först i kön. (Dvs relationen är  ) 4.Ta fram ett element ur prioritetskön och bilda ett nytt delträd genom att lägga in den båge som finns i elementet i trädet. OBS! Lägg endast in bågen om slutnoden inte är stängd! Låt slutnoden bli den nya aktuella noden, stäng den och gå till 3. Prims algoritm: prim.ppt

37 Resultat av Prims algoritm: A R B F C D E G A R B F C D E G Start Slut med  A R B F C D E G Slut med <

38 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Prims algoritm - komplexitet  Man gör en traversering av grafen, dvs O(m) + O(n).  Sen tillkommer köoperationer  För varje båge sätter man in ett element i kön, inspekterar det och tar ut det. oDetta blir O(m*Kökostnad)  Kökostnad: oLista O(m), oHeap (partiellt sorterat binärt träd) ger O(log m).  Totalt: O(n) + O(m 2 ) eller O(n) + O(m log m) beroende på implementation av prioritetskön.

39 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kruskals algoritm  Väljer bågar allt eftersom men formar inte delträd under konstruktionen.  Ingen traversering utan arbetar på ett annat sätt med bågarna.  Färglägg bågarna för att hålla reda på vilken delgraf de tillhör.

40 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kruskals algoritm 1.Skapa en prioritetskö av alla bågarna utifrån vikterna på dessa. 2.Den första bågen plockas fram och bildar den första delgrafen. Noderna färgläggs. 3.Upprepa tills kön är tom: 1.Ta fram en ny båge. 2.Om ingen av noderna är färgade 1.Färglägg med ny färg och bilda ny delgraf. 3.Om endast en nod är färgad 1.Ingen risk för cykel utöka grafen och färglägg. 4.Om båda noderna är färgade med olika färg 1.Välj en av färgerna och färga om den nya gemensamma grafen. 5.Om båda noderna har samma färg 1.Ignorera bågen, den skapar en cykel kruskal.ppt

41 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kruskals algoritm - komplexitet  Först byggs en prioritetskö från bågmängden  Komplexitet beror på implementationen av bågmängden och prioritetskön…  Varje båge traverseras en gång.  Resten kan delas in i fyra fall:  Tre fall med komplexitet O(1) där bågen kan läggas till utan problem.  Ett fall där en delgraf måste färgas om. Komplexitet O(n).

42 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Finna vägen till en nod  Bredden-först traversering ger oss vägarna från en nod till alla andra.  Om vi sparar undan vägen…  Är det den kortaste?  Ja, om alla vikter lika!  Annars då? Vi kommer titta på två algoritmer: oFloyds shortest path O(N 3 ) oDijkstras shortest path

43 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Floyds shortest path  Representera grafen med hjälp av en matris. A R B F C D E G ABCDEFGR A0  8  64  4 B  0  3  6 C8  05  34  D  350  E6  0  6  F4  3  0  G  4  6  0  R46  0

44 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Floyds shortest path Algoritm floyd(Graph g) input: A graph g to find shortest path in // Get matrix representation A(:,:,0)  getMatrix(g) N  getNoOfNodes(g) for k=0 to N-1 for i=0 to N-1 for j=0 to N-1 A(i,j,k+1) = min(A(i,j,k), A(i,k,k)+ A(k,j,k)) A(:,:,N) innehåller kortaste avstånden men hur få tag på vägen? Spara på samma gång en föregångar- matris. Det kommer också kosta O(N 3 ) så den ökar inte komplexiteten.

45 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Uppdaterad Floyd Algoritm floyd(Graph g) input: A graph g to find shortest path in // Get matrix representation A(:,:,0)  getMatrix(g) N  getNoOfNodes(g) for i = 0 to N-1 for j = 0 to N-1 if (i==j or A(i,j,0)==inf) Path(i,j,0) = -1 else Path(i,j,0) = i for k=0 to N-1 for i=0 to N-1 for j=0 to N-1 A(i,j,k+1) = min(A(i,j,k), A(i,k,k)+A(k,j,k)) if (A(i,j,k)  A(i,k,k)+A(k,j,k)) Path(i,j,k+1) = Path(i,j,k) else Path(i,j,k+1) = Path(k,j,k)

46 k0 ABCDEFGR A0  8  64  4 B  0  3  6 C8  05  34  D  350  E6  0  6  F4  3  0  G  4  6  0  R46  0 k9 ABCDEFGR A B C D E F G R A R B F C D E G Vi har hittat en kortare väg mellan A och C. Vilken är den? Vilken är vägen mellan R och G?

47 ABCDEFGR A-RFCAACA BR-DBACCB CFD-CGCCA DFDD-GCCB EERGC-AEA FFDFCA-CA GFDGCGC-A RRRFBAAC- Låt oss leta i vår föregångarmatris. (För enkelhetens skull har jag kodat om siffrorna till motsvarande noder på OH- bilden.) A R B F C D E G Man måste leta ”baklänges”. Om vi vill hitta vägen mellan A och C gör man så här: Titta på raden för A. Leta reda på kolumnen för C. Där ser vi F. Sedan tittar vi i kolumnen för F där ser vi A. Vägen är alltså A-F-C. På samma sätt ser vi att kortaste vägen mellan R och G är R-A-F-C-G (med kostnad 15).

48 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Dijkstras algoritm  Kortaste vägen från en nod n till alla andra  Ett exempel på en ”Girig” algoritm  Ta det bästa steget i varje varv  I detta fall leder det också till ett globalt min  Fungerar bara på grafer med positiva vikter.  Låt varje nod ha följande attribut  Visited – sann när vi hittat en väg till den  Distance – längden på den kortaste vägen fram till noden  Parent – Referens till föregångaren på vägen

49 Dijkstras algoritm Algoritm dijkstra(Node n, Graph g) input: A graph g to find shortest path starting from node n n.visited  true; n.distance  0; n.parent  null; Pqueue q  empty(); q  insert(n,q); while not isempty(q) v  inspect-first(q); q  delete-first(q); d  v.distance; neighbourSet  neighbours(v, g); for each w in neighbourSet do newDist  d + getWeight(v,w); if not isVisited(w) w.visited  true; w.distance  newDist; w.parent  v; q  insert(w,q); else if newDist < w.distance w.distance  newDist; w.parent  v; q  update(w,q)

50 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Dijkstras algoritm - komplexitet  Vi sätter in varje nod i kön en gång.  Totalt n*O(insert)  Vi tar ut varje nod ur kön en gång.  Totalt n*O(delete-first)  Vi kan behöva uppdatera element i kön.  Maximalt m gånger, m*O(update)  Osorterad lista  n*O(1)+n*O(n) + m*O(1) = O(n 2 ) +O(m)  Om kön är implementerad som Heap  n*O(log n)+n*O(log n) + m*O(log n) = O((n+m)log n) Om smart implementation…

51 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Floyd vs. Dijkstra  Floyd O(n 3 ) hittar den kortaste vägen mellan alla noder.  Dijkstra O((n+m) log n) med heap, hittar kortaste vägen mellan en nod och alla andra.  Måste köras N gånger för att få samma resultat som Floyd. Dvs O(n(n+m) log n).  Är bättre på stora glesa grafer.

52 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Flödet i en graf  Riktad graf med vikter c v,w, som anger flödeskapacitet över bågen (v,w).  Kapaciteten kan t.ex. vara mängden vätska som kan flöda genom ett rör, maximala mängden trafik på en väg eller kommunikationskapaciteten i ett datornät.  Grafen har två noder s (source) och t (sink) och uppgiften är att beräkna det maximala flödet mellan s och t.  Genom varje båge (u,v) kan vi maximalt ha ett flöde på c u,v enheter.  För varje nod v gäller att det totala inkommande flödet måste vara lika med det utgående flödet.

53 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Kapacitet och flöde  Flödet är en funktion på kanterna:  0 ≤ flöde ≤ c(u, v)  Flödet in till noden = flödet ut ur noden  Värde/value: Det kombinerade flödet in till avloppet. s t s t

54 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Maximumflödes problem  Givet ett nätverk N, hitta ett flöde med maximalt värde  Ett exempel på maximalt flöde Värde = 5 s t

55 Förbättrande (augmenting) flöde s t s t s t Nätverk med flödes- värde 3 Förbättrande väg (Augmenting path) Nu har flödesvärdet ökat till 4!!

56 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Ökande väg  Framåtriktade bågar  flödet(u, v) < c(u, v)  Flödet kan ökas!  Bakåtriktade bågar  flödet(u,v) > 0  Flödet kan minskas! u v u v

57 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Maximala flödesteoremet + algoritm  Ett flöde har maximum värde om och endast om nätverket inte har någon förbättrande väg.  Ford & Fulkerson algoritmen: Initialisera nätverket med noll flöde Anropa metoden findFlow() som definieras Om det finns förbättrande vägar: Hitta en av dem Öka flödet Anropa (rekursivt) findFlow()

58 Initiera nätverket med nollflöde. Kapaciteterna i svart ovan bågarna och flödet i grönt nedan bågarna. Skicka igenom ett enhetsflöde genom nätverket. Flödesvägen markerat med rött och de förbättrade flödesvärdena i blått.

59 Skicka ytterligare ett enhetsflöde genom nätverket. Skicka igenom ytterligare ett enhets- flöde genom nätverket. Notera att det finns ytterligare en förbättrande väg som går genom kanten i mitten.

60 Skicka ett enhetsflöde genom den förbättrande vägen. Nu finns det inga fler förbättrande vägar. Alltså… Vi har hittat detta nätverks maximala flöde!

61 DoA VT -07 © Anders Broberg, Lena Kallin Westin, Hur gör man mer specifikt?  Hur vet man att det finns en förbättrande väg?  Hur vet man vilken av de förbättrade vägarna man ska ta först?  Algoritmen på sidorna mer specifik.  Noderna numreras och numren används som en fast prioritetsordning i en kö.

62 s t a Första vägen från s till t: s märks som stängd och (-,  ) (dvs inte öppnats från någon nod flödet kan förändras oändligt) Bågarna från s traverseras, noderna i andra änden markeras öppna och märks med deras maximala kapacitet och sätts in i prio-kön. q = (a, b) b (-,  ) s t a b (s, 2)

63 Första noden tas från kön (a) och markeras stängd. Dess bågar undersöks i tur och ordning. Bågen (a,s) leder till stängd nod och (a, b) leder till öppen nod - inget händer. Bågen (a,t) leder till en ny nod t som markeras (a, 2) Nu har vi nått fram till t, traverseringen avbryts. Man följer stegen bakåt till s och markerar bågarna samtidigt som noderna avmarkeras. s t a b (-,  ) (s, 2) (a, 2) s t a b

64 Andra vägen från s till t: s märks som stängd och (-,  ) Bågarna från s traverseras. Eftersom vägen till a inte kan ökas mer struntar vi i den. q=(b) Första noden tas från kön (b) och markeras stängd. Dess bågar undersöks i tur och ordning. Bågen (b,s) leder till stängd nod - inget händer. Bågen (b,a) leder till en ny nod a (baklänges) som kan markeras med maximalt det nuvarande flödet, dvs (b, 0). Bågen (b,t) leder till en ny nod t som markeras (b, 2). q=(a,t) s t a b s t a b (-,  ) (s, 2) (-,  ) (s, 2) (b, 0) (b, 2)

65 Första noden tas från kön (a) och markeras stängd. Dess bågar undersöks i tur och ordning. Bågen (a,s) och (a, b) leder till stängda noder och (a, t) till en öppen nod - inget händer. Första noden tas från kön (t). Vi har nått t. Traversering avbryts och vi går bakåt och avmakerar allt. Om vi nu försöker börja om igen så hittar vi inget nytt eftersom både (s,a) och (s,b) utnyttjas maximalt. s t a b (-,  ) (s, 2) (b, 0) (b, 2) s t a b


Ladda ner ppt "© Anders Broberg, Lena Kallin Westin, 2007 Datastrukturer och algoritmer Föreläsning 7 och 8."

Liknande presentationer


Google-annonser