Presentation laddar. Vänta.

Presentation laddar. Vänta.

Research for safety 2002-09-13 1 Spectrum Estimation Statistical digital signal processing and modeling. Monson H. Hayes. Kap 8. Niclas Persson & Peter.

Liknande presentationer


En presentation över ämnet: "Research for safety 2002-09-13 1 Spectrum Estimation Statistical digital signal processing and modeling. Monson H. Hayes. Kap 8. Niclas Persson & Peter."— Presentationens avskrift:

1 Research for safety Spectrum Estimation Statistical digital signal processing and modeling. Monson H. Hayes. Kap 8. Niclas Persson & Peter Hall

2 Research for safety Vad är spektralskattning?  Skatta energin i signalen för en viss frekvens  Definition, effektspektrum: • DFT av autokorrelationsfunktionen  Intressanta problem: •Begränsat antal data •Brus, störningar  Hur utnyttja kunskaper om den bakomliggande processen?  Tillämpningar…

3 Research for safety Metoder för spektralskattning  Icke-parametriska •Ingen kännedom om processen nödvändig •abs(fft(x)) och liknande  Parametriska •Kännedom om processen är nödvändig •AR(2)  Alternativa (någonstans mellan IP och Par) •Minimum varians •Maximum entropi  Frekvens •MUSIC m.fl.

4 Research for safety Viktiga egenskaper  Upplösning •Förmågan att skilja närliggande frekvensinnehåll  Bias •Är spektralskattningen väntevärdesriktig?  Varians •Går variansen mot noll när antalet data ökar?

5 Research for safety IP - FFT  plot(abs(fft(x)).^2) - Vad är det egentligen man gör?  Definition: Periodogram = (1/N) abs(fft(x)).^2  Periodogram = skattning av spektrum baserat på begränsat antal data •Sant periodogram faltat med en sinc kvadrat (läckage)  Egenskaper: •Asymptotiskt väntevärdesriktig •Ej avtagande varians = ej konsistent!

6 Research for safety IP – Modifierade I  Olika fönster  Syftar till att finna avvägning mellan hög upplösning och undertryckning av sidlober.  MATLAB: wintool (GUI, 6.5)

7 Research for safety IP – Modifierade II  Syftar till att få konsistenta skattningar  Medelvärdesbildning •Bartlett, icke överlappande segment •Welch, överlappande segment  Glättning •Blackman-Tukey, fönstring av akf •Minskar inflytandet av osäkra akf-komponenter Är "Figure of Merit" ett bra jämförelse tal för de olika algoritmerna, eller ska man använda varians eller upplösning var för sig när man väljer metod.

8 Research for safety Alt – Minimum Variance  Filtrera signalen med ett filter som har bandbredd Δ, centerfrekvens ω i och filterordning p  Filtret designas så att •förstärkningen är 1 för frekvensen ω i •läckage från sidolober minimeras (Minimum Variance)  Skatta effekten för den filtrerade signalen  Fördelar – hög upplösning  Nackdelar - beräkningskrävande för stora p

9 Research for safety Alt – Maximum entropy  Klassiska metoder “sätter” r x (k) = 0 för k ≤ N •begränsar upplösningen och säkerheten I skattningen av spektrumet  Maximum entropy extrapolerar r x (k) = 0 för k > N så att entropin för processen maximeras “signalen x(n) görs så vit som möjligt eller spectrumet görs så platt som möjligt”  Fördelar – ???  Nackdelar - ??? Varför entropi?

10 Research for safety Par – AR, ARMA, MA …  Kunskap om processen inkorporeras i form av en parametrisk modellstruktur  Parametrarna skattas med lämplig metod (se material eller Ljung bibel) och spectrumet beräknas utifrån de skattade parametrarna  Fördelar – noggrannhet och upplösning  Nackdelar – •Bias om modell inte är konsistent med data •Frekvenssplittring vid övermodellering

11 Research for safety Frekvensskattning  Letar efter vissa frekvenskomponenter (harmonics)  Modell: Sinusar i brus  Analogi: Beamforming, letar efter riktningar  Metoder som bygger på egenuppdelning av ak-matrisen, R: •Pisarenko Harmonic Decomposition •MUSIC •Egenvärdesmetoden •Principalkomponenter

12 Research for safety Frekvensskattning – Pisarenko  Antar p frekvenskomponenter  Givet p+1 akf-komponenter -> dim(brusunderrummet) = 1  Ortogonalitet -> projektionen av signalegenvektorerna på brusegenvektorn är noll  Egenfiltrets nollställen ger frekvenserna  Bruskänslig

13 Research for safety Frekvensskattning - MUSIC  Antar p frekvenskomponenter  Givet M akf-komponenter -> dim(brusunderrummet) = M-p  Utnyttjar fler brusegenvektorer än Pisarenko (M > p+1)  Mindre bruskänsligt  MATLAB: pmusic, rootmusic

14 Research for safety Frekvensskattning – Egenvärdesmetoden  Som MUSIC, fast termerna är skalade med resp. egenvärde  Teoretiskt identiskt med MUSIC, så när som på en skalfaktor  Vid skattad ak-matris mindre känslig för osäkra nollställeplaceringar  Färre falska toppar i pseudospektrum  MATLAB: peig, rooteig

15 Research for safety Principalkomponenter  Utnyttja egenuppdelning av R och släng brusdelen  Resulterar i ett R med reducerad rang (principalkomponenter)  Använd någon spektralskattningsmetod på detta R  Fördel: Man har “filtrerat bort” delar av bruset

16 Research for safety Matlab kommandon  help signal -> alla nödvändiga funktioner som kan behövas  Några bra gui:n för att snabbt testa olika metoder •wintool (titta på olika fönster och dess egenskaper) •sptool (titta på spektrum med diverse olika metoder)

17 Research for safety Uppgift 1 - Spektralskattning Som svar förväntar vi oss 1)Frekvens(er) för den/de resonans(er) ni funnit. 2)Vilken metod ni tyckte gav bäst resultat och varför. 3)Bonus om man kan ange den exakta processen På kurshemsidan finns en mat-fil (y.mat) som generarats från en av oss känd process. Processen innehåller en eller flera resonansfrekvenser. Uppgiften består i att ta reda på den/de resonansfrekvens(er) som förekommer så noggrannt som möjligt enligt de metoder som presenterats i materialet. Fina priser utlovas till dem som kommer närmast!

18 Research for safety Uppgift 2 - Frekvensskattning I filen FrekEst.mat finns signalen y som är ett antal sinusar i brus (Ts=1). Uppgiften är att med hjälp av metoderna i artikeln ta reda på: 1.Hur många sinusar 2.Vilka frekvenser 3.Extra: Effekt (amplitud) hos sinusarna och brusvarians Testa gärna flera metoder och tala om vilken som funkar bäst!

19 Research for safety Frågor (några utvalda)  Artikeln presenterar utförligt och tydligt olika klassiska spektralskattningsmetoder baserade på periodogram (Bartlett, Welch, B-T). Detta ingår i princip i grundkursen. Finns ytterligare metoder eller material som hade varit värt att ta upp?  Är "Figure of Merit" ett bra jämförelse tal för de olika algoritmerna, eller ska man använda varians eller upplösning var för sig när man väljer metod.  Jag har lite funderingar om man kan säga när de olika metoderna är lämpliga att använda. Lite erfarenheter vore trevligt att få ta del av. Ska man se samtliga metoder som komplement till varandra, eller kan man ge "lätta" konkreta tips för situationer när en viss metod är att föredra?  Vad finns det för fördelar/nackdelar med subspace-metoder och principalkomponentanalys? När ska man välja resp. metod?


Ladda ner ppt "Research for safety 2002-09-13 1 Spectrum Estimation Statistical digital signal processing and modeling. Monson H. Hayes. Kap 8. Niclas Persson & Peter."

Liknande presentationer


Google-annonser